
www.manaraa.com

Softw Syst Model (2018) 17:1055–1078
https://doi.org/10.1007/s10270-016-0536-y

REGULAR PAPER

Encoding process discovery problems in SMT

Marc Solé1 · Josep Carmona2

Received: 9 October 2014 / Revised: 11 May 2016 / Accepted: 17 May 2016 / Published online: 6 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Information systems, which are responsible for
driving many processes in our lives (health care, the web,
municipalities, commerce and business, among others), store
information in the form of logs which is often left unused.
Process mining, a discipline in between data mining and
software engineering, proposes tailored algorithms to exploit
the information stored in a log, in order to reason about the
processes underlying an information system.Akey challenge
in process mining is discovery: Given a log, derive a formal
process model that can be used afterward for a formal analy-
sis. In this paper, we provide a general approach based on
satisfiability modulo theories (SMT) as a solution for this
challenging problem. By encoding the problem into the log-
ical/arithmetic domains and using modern SMT engines, it
is shown how two separate families of process models can
be discovered. The theory of this paper is accompanied with
a tool, and experimental results witness the significance of
this novel view of the process discovery problem.

Keywords Process discovery · SMT application · Causal
nets · Petri nets

Communicated by Dr. Daniel Varro.

B Josep Carmona
jcarmona@cs.upc.edu

Marc Solé
kwisath@gmail.com

1 CA Strategic Research, CA Technologies, Barcelona, Spain

2 Universitat Politècnica de Catalunya, Barcelona, Spain

1 Introduction

Nowadays, information systems are continuouslymonitored,
producing a vast amount of data in form of logs that describe
the execution of their main processes. One of the princi-
pal challenges is to use this data source in order to enhance
an information system into several dimensions: correct-
ness, performance, alignment with the specification, among
others.

Process mining is a relatively novel discipline which has
received a lot of attention in the last decade [1]. By using
the logs as source of information, process mining techniques
are meant to discover, analyze and enhance formal process
models of an information system [2]. There is a certain
connection between the well-established data mining field,
which focuses on the analysis of data sets to obtain hidden
relationships, and process mining, since some of the process
mining algorithms are grounded on traditional data mining
techniques. However, process mining focuses on processes
underlying an information system (like the process of han-
dling customer orders, or the process of treating a patient in
a hospital), and therefore the problems tackled in these two
fields are rather different.

Process discovery faces the following problem: to dis-
cover a formal process model (e.g., a Petri net [3], or an
automaton) that adequately represents the traces in the log.
The reader can refer to Figs. 1 and 2 to see toy examples
of process discovery. Process discovery can be oriented to
control-flow (discover the causal relationships between the
activities), data (determine data patterns for several pur-
poses) or social (find the structure of the human collaboration
to carry out processes). In this paper, we focus on control-
flow process discovery.

In the last decade, several algorithms for control-flow
process discovery have appeared, most of them focused on

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0536-y&domain=pdf

www.manaraa.com

1056 M. Solé, J. Carmona

Fig. 1 Process discovery aims
at obtaining a model out of a
log. (Above) In this example,
two models, an additive one (a
C-net on the left) and a
restrictive one (a Petri net on the
right), are generated from the
same log. (Below) A model is
additive if the addition of
elements can only increase the
language it represents; on the
other hand, restrictive models
contain elements (places in the
case of Petri nets) whose
addition can only restrict the
language of the model

L =
abce

acbe

a

b c

e

a

b

c

e

PN discoveryC-net discovery

a

b c

e

a

b

c

e L =

⎧
⎪⎨

⎪⎩

abce

acbe

ae

L = {abce}

Log

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

abe

ace

abce

acbe

(a)

a

b

c

e

(b)

a
start

booking

bbook flight

c

book car

d
book hotel

e
complete
booking

Log

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

abe

ace

abde

adbe

abcde

abdce

acbde

adbce

adcbe

acdbe

Fig. 2 a Causal net. b Causal net Ctravel from [11]

the discovery of Petri nets. These algorithms have diverse
assumptions, guarantees and complexity. In general, control-
flow discovery algorithms can be split into lightweight meth-
ods that focus on restricted formalisms and complexmethods
that allow for general process models at the expense of a
higher computational cost. The contributions of this paper
can be categorized into the class of complex control-flow dis-
covery algorithms, casting the discovery as an optimization
problem. The techniques of this paper may be an alternative
to the current complex techniques, encoding the discovery
problem into a satisfiability formula whose satisfying assign-
ments denote the discovered process models.

Satisfiability Modulo Theories (SMT) [4] is a decision
problem for first-order logic formulas combined with back-
ground theories such as arithmetic, bit-vectors, arrays and
uninterpreted functions. It has been successfully applied in
several disciplines, including program verification [5], unit
testing [6], interactive theorem provers [7], scheduling [8]
and planning [9]. In the last decade, there has been an enor-
mous progress in SAT engines, making it possible to apply

them in industrial scenarios [10]. This is the driving force
that has motivated the work presented in this paper.

A common ingredient in the aforementioned applications
is the use of amodel of an SMT/SAT formula to construct the
solution, e.g., the problem of scheduling reduces tomodeling
the set of restrictions that a valid schedule should satisfy as
an SMT formula. The same approach will be applied in this
work: Log traces implicitly represent the causal relations of
a potential process model, and the problem of process dis-
covery is to derive a process model which satisfies all these
implicit causal relations. To present the theory in a general
setting, we will distinguish two types of process models:
additive models, for which the addition of elements in the
model implies the addition of behavior. Examples of addi-
tivemodels areCausal nets [11]. On the other hand, elements
in a restrictive model may exclude certain behavior, thus
restricting the language produced by the model. An exam-
ple of restrictive models is Petri nets [3]. The distinction
between additive and restrictive models allows us to con-
sider the discovery problem of each class very differently,

123

www.manaraa.com

Encoding process discovery problems in SMT 1057

describing generic and particular algorithms for each class.
The main contribution of this work is the proposal of generic
algorithms for these two classes of process models, and the
proposal of techniques for encoding the discovery of Petri
nets using SMT.

Until now, SMT techniques for software engineering have
focused on a program as the main object of study: symbolic
execution, model checking, static analysis and verification of
programs [10]. This paper brings SMT to a different degree
of abstraction, considering the use of formal process models
in the life cycle of an information system as a main actor
that needs to be obtained, analyzed and enhanced during the
different stages of the design of a system.

The techniques of this paper are meant to provide fitting,
precise and simple process models without any restriction
of the behavior underlying the log. In contexts where noise
mayexist,we foresee the application of these techniques after
noisefilteringhas been applied on the log.Likewise,when the
size of the log prevents from applying the techniques of this
paper right away, one may use decompositional approaches
(e.g.clustering, projection) to derive tractable sublogs that
can be handled by the techniques of this paper.

The contribution of this paper with respect to our previous
work [12,13] is summarized as follows:

– The techniques in [12,13] only focus in C-nets, while in
this work we propose generic algorithms for two classes
of process models: additive and restrictive (Sect. 4).

– An SMT-encoding technique for the discovery of Petri
nets, and its corresponding implementation and experi-
mental evaluation (Sects. 6, 7).

– A complexity study of the encoding problems presented
along the paper.

– A new variant of the tool from [12,13] is presented that
uses an SMT solver under pseudo-Boolean constraints,
and an experimental evaluation witnessing the improve-
ment over the previous version is reported.

1.1 Organization of this paper

To illustrate the contribution of this paper, an example is
provided in Sect. 2, together with a short overview of the
current applications of process discovery. Then, in Sect. 3
the necessary preliminaries are briefly introduced. Generic
algorithms for the discovery of additive/restrictivemodels are
proposed in Sect. 4. Then, instantiations of these algorithms
for the particular case ofC-nets and Petri nets are described in
Sect. 5 and Sect. 6, respectively. Sect. 7 summarizes a set of
experiments that have been performed on the tool supporting
the techniques of this paper. Then in Sect. 8 a discussion on
relatedwork is provided. Finally, Sect. 9 presents futurework
and concludes this paper.

2 Process discovery: applications and a motivating
example

The growing field of process discovery has been already
applied in several scenarios. Here we try to summarize six of
them (the list is by nomeans exhaustive), providing examples
of use of process discovery:

– Municipalities: Typical processes in a municipality are
issuing building permits or the handling of invoices.
Often, there exists no formal or complete definition of
these processes, but process discovery can address this.
This allows to analyze afterward the differences between
organizations, and the degree of alignment between every
case and the formal process. Several municipalities in
Holland have applied process discovery to their logs [2].

– Health care: Information systems that monitor the
processes within hospitals record every event that is pro-
duced. This allows, for instance, to have an accurate view
of the typical paths followed by a particular group of
patients [14,15]. Also, medical devices generate data that
can also be analyzed from a process perspective.

– Web services: Service-oriented architecture (SOA) prod-
ucts like IBM WebSphere provide logging of the event
information. Consequently, the logs produced can be pro-
vided to process discovery techniques in order to formally
describe the execution of business processes, and deter-
mine its correctness [16].

– Chip manufacturing: ASML is the leading manufacturer
ofwafer scanners in theworld. In [17], a case study shows
the applicability of process discovery in this context.

– Auditing: The role of an auditor may change in the pres-
ence of processmining techniques, sincemany checkings
can be done automatically and without the restriction to
be applied to a small set of records [18].

– Software engineering: Apart from remarkable open-
source/academic tools like ProM (Eindhoven Univer-
sity), several well-known software vendors are incorpo-
rating process discovery capabilities on their products:
ARIS Process Performance Manager (Software AG),
Comprehend (Open Connect), Discovery Analyst (Stere-
oLOGIC), Flow (Fourspark), Futura Reflect (Percep-
tive Software), Interstage Automated Process Discovery
(Fujitsu), OKT Process Mining suite (Exeura), Process
Discovery Focus (Iontas/Verint), Disco (Fluxicon), Celo-
nis and Minit (Gradient).

We informally describe with a toy example the problem of
process discovery and the main differences between additive
and restrictive models. Let us assume an information sys-
tem coordinating the purchase of items in an online shop.
We focus on four particular events of the purchase process:
Activity a corresponds to a customer logging into the system,

123

www.manaraa.com

1058 M. Solé, J. Carmona

b represents the fact that the customer places some online
orders, c marks the finalization of a survey with his/her sat-
isfaction with the company, while e represents the customer
logout. By monitoring the system, the two traces abce and
acbe have been recorded in the log L , as shown in Fig. 1.
Informally, in the behavior represented the customer first
enters into the system (a), then performs b and c (in any
possible order) and finally exits the system (e).

The discipline of Process discovery aims at generating a
process model from the traces contained in a log. In the con-
text of this paper, a process model is considered to have two
crucial characteristics: (1) a graphical description, to enable
the visualization in a software engineering setting, and (2)
a formal semantics, to allow for the unambiguous reason-
ing on the underlying behavior. The two classes of models
present in the figure, namely C-nets (left) and Petri nets
(right), are representatives of two broad families of process
models: additive models and restrictive models, respectively.
The formal semantics of these two models are described in
the following sections, but can be intuitively understood as
follows: In the C-net, the activity a can occur (since it is free
from input obligations), generating obligations to occur to the
adjacent activities b and c. Generating obligations is denoted
by the dots associated with the arcs exiting from the activity.
For the Petri net, the process has initially a token (shown as
a dot) in the initial place (the circle beneath the a). When the
transition a occurs, the token is removed and copied to the
places on either side of a, enabling the transitions b and c.
These models have been obtained from the log of the figure
by using the techniques described in this paper.

The difference between an additive and a restrictivemodel
can be seen by considering the slight modifications made
in the structure of each one of the models discovered: The
addition of an arc between event a and e in the discovered
C-net gives rise to the C-net in the bottom-left corner. This
addition incorporates the trace ae as a possible behavior (i.e.,
a customer is allowed to leave the system without neither
purchasing anything nor filling the survey). In contrast, the
new place connecting transitions b and c in the Petri net
discovered produces the Petri net in the bottom-right corner
of the figure. This net enforces the customer to first buy some
goods and then take the survey, allowing only one of the
possible traces in the discovered model.

3 Background

3.1 Mathematical preliminaries

A multiset (or a bag) is a set in which elements of a set
X can appear more than once, formally defined as a func-
tion X → N, where N denotes the set of natural numbers.
We denote as B(X) the space of all multisets that can be

created using the elements of X . Let M1, M2 ∈ B(X), we
consider the following operations on multisets: sum (M1 +
M2)(x) = M1(x) + M2(x), subtraction (M1 − M2)(x) =
max(0, M1(x)−M2(x)) and inclusion (M1 ⊆ M2) ⇔ ∀x ∈
X, M1(x) ≤ M2(x). We say a multiset M is k-bounded if
∀x ∈ X, M(x) ≤ k. As usual, sets will be considered as bags
when necessary.

A log L is a bag of sequences of activities. In this work, we
restrict the type of sequences that can forma log. In particular,
we assume that all the sequences start with the same initial
activity and end with the same final activity and that these
two special activities only appear once in every sequence.
For instance, in the log of Fig. 1 all sequences start with
activity a and end with activity e, and these activities appear
only once in each sequence. This assumption is without loss
of generality, since any log can be easily converted into this
form by using two new activities that are properly inserted
in each trace.

Given a finite sequence of elements σ = e1e2 . . . en , its
length is denoted by |σ | = n, and the element at position i
(e.g., ei) is denoted by σi . Its prefix sequence up to element
i (but not including it), with i ≤ n + 1, denoted by σ←i , is
e1 . . . ei−1. We define σ←1 as the empty sequence, denoted
by ε. Conversely, its suffix sequence after i , with i < n,
denoted by σi→, is ei+1 . . . en . We express the fact that an
element e appears in sequence σ as e ∈ σ . The alphabet of
σ , denoted by Aσ , is the set of elements in σ . We extend this
notation to logs, so that AL is the alphabet of the log L , i.e.,
AL = ⋃

σ∈L Aσ .

3.2 Process discovery

We assume a log L represents the footprints of the real
process executions of a system S that is only (partially) vis-
ible through these runs. Process discovery techniques aim at
extracting a process model M (e.g.a Petri net) from L with
the goal of eliciting the process underlying in S. We denote
obs(M) as the set of traces underlying a model M . By relat-
ing the behaviors of L , obs(M) and S, particular concepts
can be defined [19]. A model M fits log L if L ⊆ obs(M). A
model is precise in describing a log L if obs(M)\L is small.A
model M represents a generalization of log L with respect to
system S if some behavior in S\L exists in obs(M). Finally,
a model M is simple when it has the minimal complexity
in representing obs(M), i.e., the well-known Occam’s razor
principle. It is widely acknowledged that the size of a process
model is the most important simplicity indicator [2].

The problem of process discovery is solved by process
discovery algorithms that are formally defined as functions
that map L onto a process model M in such a way that
some of the aforementioned metrics (fitness, precision, gen-
eralization and simplicity) are optimized. Unlike in several
approaches in the literature [2], in this work we will take into

123

www.manaraa.com

Encoding process discovery problems in SMT 1059

accountmost of these factorswhenderiving themodels. First,
the methods can be used to derive fitting models. Second,
we consider techniques to improve precision and general-
ization of the derived models (see for instance Sect. 4.1).
Finally, we incorporate techniques to simplify process mod-
els (e.g.reducing arcs or bindings in a C-net) without severely
penalizing the other quality metrics.

4 Generic algorithms for the discovery of additive
and restrictive models based on SMT

Satisfiability modulo theories (SMT) is a decision problem
for logical formulas with respect to combinations of back-
ground theories expressed in first-order logic with equality.
Examples of theories are the theory of real numbers, the the-
ory of integers and the theories of various data structures
such as lists, arrays or bit-vectors. SMT is the problem of
determining whether an instance formula is satisfiable.

This section describes the SMT-based generic algorithmic
support for the two classes of process formalisms considered
in this work: additive and restrictive models. As will become
clear at the end of the section, this alternative on process
formalisms is meaningful since the nature of discovery tech-
niques required for each class is completely different.

4.1 Discovery of additive models

Structural elements in an additive model have the role of
expressing the behavior allowed by the model. Hence, the
more structural elements are present, the more behavior is
described in the model. An example of an additive model is
a grammar: The addition of a new production rule can only
express more behavior accepted by the grammar. Another
example of additive model is an automaton: The addition
of arcs and states potentially increases the language. Tech-
niques for discovery C-nets, an additive process formalism,
are presented in Sect. 5.

For many additive models, it is possible to construct an
SMT problem whose solution can be transformed into a
model capable of describing a given log L (and possibly
showing additional behavior). A general algorithm for such
a task is shown in Algorithm 1 (for the particular case in
which the generic cost function is minimized). The objective
of this algorithm is to find the smallest model M with perfect
fitness (L(M) ⊇ L).

The fundamental idea is to encode the equations that guar-
antee that the sequences in the log L can be replayed by the
derived model M (the structural_equations func-
tion, line 5), thus guaranteeing a perfect fitness of the model.
An example of structural equations for a particular example
of additive model is described in detail in Sect. 5. Then a cost
function must be defined (in the algorithm, it is assumed to

Algorithm 1 Discover optimized additive model
1: function discoverAdditiveModel(L)
2: M ← trivial_model(L)

3: min ← cost_lower_bound(L)
 The cost of a solution is
≥ min

4: max ← cost(M) − 1
5: Es ← structural_equations(L)

6: while min ≤ max do
7: avg ← �(min + max)/2
8: E ← Es ∧ (cost_function(L) ≤ avg)
9: f easible, solutions ← solve(E)
 Call SMT solver
10: if f easible then
11: M ← extract_model(solutions)
 Model feasible
12: max ← cost(M) − 1
 Since cost(M) ≤ avg
13: else
14: min ← avg + 1
 Model unfeasible
15: end if
16: end while
17: return M
18: end function

be an integer cost function), typically based on the number
of elements that the model contains. There are two functions
in Algorithm 1 related to the cost function: One is cost that
returns the value of the cost function for a given model M ;
the other is cost_function which encodes as an SMT
formula the computation of the cost function using the SMT
variables appearing in structural_equations.

Since the latter function allows limiting the cost of the
model found (if the SMT problem is feasible), using a binary
search (lines 6–16) this cost function is minimized, thus
yielding a model with the least number of elements con-
sidered by the function. The binary search uses the functions
solve and extract_model. Function solve(E) calls
the SMT solver on the set of equations E and returns two
values: feasible and solutions. feasible is a Boolean value
indicating whether the solver found a solution to the equa-
tions in E . solutions contains the values of the SMT variables
in case the problem was feasible. On the other hand, func-
tionextract_model(solutions) builds an additivemodel
from the values of SMT variables where its language is guar-
anteed to include L .

Note that a binary search requires some initial bounds
on the cost function. For this reason, a trivial (and typically
large) model is initially built that can replay the log, to pro-
vide an initial upper bound (line 4). The initial lower bound
(represented by the function cost_lower_bound) can be
derived from the information in the log or some restriction
of the model.

The minimization of model elements achieved with the
binary search addresses another conformance factor, simplic-
ity (see Sect. 3.2). In general, it is assumed that models with
less elements are simpler. Thus, this algorithm, in the general
case, guarantees that we obtain the simplest possible model
(in terms of number of arcs) that provides complete fitness
of the log.

123

www.manaraa.com

1060 M. Solé, J. Carmona

This algorithm is valid for any additive model as long
as the necessary restrictions can be encoded in a particular
SMT domain for which there is a solver available. However,
the usefulness of the algorithm may be hampered for many
different factors, including:

– The complexity of the encoding of the structural equa-
tions or the cost function.

– The difficulty of defining a suitable cost function that
promotes as many conformance factors (see Sect. 3.2) as
possible.

For instance, let us consider an automaton, which is an
additive model. If the cost function to be minimized is the
number of arcs or states, the resulting optimal automatonwill
contain a single state and a self-loop for every symbol in the
alphabet AL of the log L; thus, the automaton will represent
the language A∗

L . This is a trivial solution for which the SMT
apparatus was unnecessary. However, as we see in this sec-
tion, there exist additive models for which it is possible to
define simple encodings and have useful cost functions.

Further uses of SMT in additive models: The flexibility of
SMT problems can be used to tackle one of the most chal-
lenging problems for additive models: generate a model that
explicitly forbids some behavior (thus improving precision
if behavior not present in the log is forbidden). While the
latter is straightforward for restrictive models, additive mod-
els must consider all their components and their interactions.
For instance, in the case of a grammar that can produce a
forbidden behavior, the question is how to modify the pro-
ductions so that the behavior in the log can still be produced
by the grammar, but, at the same time, the behavior we want
to forbid cannot be generated. In this section, we outline a
methodology that can be used in combination with an SMT
solver to achieve this particular objective.

First of all we must find undesired behavior. This can be
explicitly given as negative examples by the user in some
cases, but frequently these counterexamples are not available.
Assuming we want to restrict as much as possible the model
to the behavior in the log, we consider as undesired behavior
the one included in the model but not present in the log. The
idea will be to find this behavior, determine whether there is
enough evidence in the log so as to consider it undesired, and
then forbid the generation of this behavior in the creation of
the model.

A particular realization of this general concept is illus-
trated in Algorithm 2. The algorithm receives three para-
meters: the additive model M , the log L and a thresh-
old t . The idea is that all sequences up to length t that
can be generated by the model but do not appear in the
log, i.e. L(M)\L , are considered as potentially undesired

Algorithm 2 Forbid behavior in an additive model
1: function forbidInAdditiveModel(M , L , t)
2: Es ← structural_equations(L)

3: l ← 1
4: while l ≤ t do
5: σ ← forbidden_behavior(M, L , l)
6: if σ = ε then
 If no such σ exists
7: l ← l + 1
 Increment length of σ

8: else
 |σ | = l ∧ σ ∈ LM \ L
9: if relevant(L , σ) then
10: F ← elements(M, σ)

11: E ′
s ← Es ∧ ∨

e∈F e? /∈ M
 Forbid some element
of F

12: f easible, M ′ ← binary_search(E ′
s)
 Obtain

minimal model satisfying E ′
s

13: if f easible then
14: Es ← E ′

s
 Update structural equations
15: M ← M ′
 Update model
16: l ← 1
 To ensure new model forbids all lengths
17: else
18: L ← L ∪ {σ }
 Discard E ′

s . Avoid finding again
σ

19: end if
20: else
21: L ← L ∪ {σ }
 Avoid finding again σ

22: end if
23: end if
24: end while
25: return M
26: end function

behavior1. The algorithm starts by looking for potentially
undesired sequences of length l (line 5) using the function
forbidden_behavior. This function returns the empty
sequence ε if no sequence of length l exists in L(M)\L .
In such a case, the length of the searched sequence l is
incremented. Otherwise, we have found a sequence that we
potentially have to forbid. The function relevant deter-
mines whether, considering the information of the log, the
sequence is relevant enough to be forbidden or not.

If the sequence is not considered relevant, we add it to the
log preventing that the algorithm finds the same sequence
over and over again. Otherwise, we compute the set F of
elements in the model M that are involved in the produc-
tion of σ . This can be done by replaying the sequence on the
model. For instance, in a grammar this set would be the set
of productions of the grammar that are needed to produce the
sequence (if more than one set is possible, only one of them
is returned by this function). Then, the set of structural equa-
tions Es is extended with an equation that forbids at least
one of the elements required to produce σ . If several sets F
exist, the algorithm will keep finding σ until all possible sets

1 Notice that depending on the notion of valid sequence, the notion
of undesired behavior may vary. For instance, for certain formalisms,
only complete sequences (i.e., sequences from start to end) may be
considered. For the sake of generality, we opt to abstracting from these
matters in Algorithm 2.

123

www.manaraa.com

Encoding process discovery problems in SMT 1061

F have been considered. Once the enriched set of structural
equations E ′

s has been computed, the model (if feasible) is
minimized using the function binary_search that corre-
sponds to lines 6–17 of Algorithm 1 substituting Es by the
parameter of the function, in this case E ′

s . If the problem
is feasible, then the changes in the structural equations and
the model are accepted; otherwise, σ is added to L to pre-
vent finding the sequence again, since we cannot forbid this
behavior2. In the former case, notice that the length is reset
to 1 in Step 16: To avoid that M ′ may incorporate forbid-
den behavior already removed in M , since M ′ and M can
be drastically different. Therefore, the undesired behavior of
any length below the threshold t must be tested each time
a new model is computed. In any case, since the number of
potential traces to forbid is finite (and depends on the maxi-
mal length t), Algorithm 2 terminates.

An implementation of this algorithm has demonstrated
to be crucial for tackling particular discovery instances, as
demonstrated in Sect. 7. Since this algorithm strongly relies
on the notion of replay, Sect. 5.4 provides a detailed descrip-
tion for the particular case of C-nets.

4.2 Discovery of restrictive models

The structural elements of a restrictive model are meant to
cut the set of potential behaviors. Therefore, adding a new
element implies that some behavior is left out. An example of
restrictive model is a linear programming model, where the
addition of constraints clearly reduces the space of solutions
of the model. In the context of process mining, Petri nets [3]
are the representative restrictive model. A technique for the
discovery of Petri nets is described in Sect. 6.

Since an element of a restrictive model may potentially
remove behavior, the general approach for this class of sys-
tems is necessarily quite different. The SMT encoding for
additive models is a juxtaposition of different subproblems,
i.e., each sequence could constitute a single SMT problem
and solved independently, and the union of all these solu-
tions would still be a valid global solution to the whole set
of sequences. The derived subproblems are put together to
allow optimizing the number of elements in the model (e.g.,
minimizing the number of arcs in the C-net). In contrast,
the SMT problem for restrictive models should consider all
the sequences in the log, because we must ensure that the
new element does not restrict any of the observed behavior.
Thus, in this approach, several SMTproblems are solved, and
each one of these solutions corresponds to one element of the
model. We iteratively discover new restrictive elements until

2 In this case if previous iterations of the algorithm were only due to
forbidding σ on other parts of the model, these modifications could in
principle be rolled back.

we obtain some guarantee that no other restrictive element
can be found that forbids some non-observed behavior.

Algorithm 3 Discover optimized restrictive model
1: function discoverRestrictiveModel(L)
2: M ← empty_model()
3: Es ← structural_equations(L)

4: while constrainable(M, L) do
5: E ← Es ∧ (new_element(Es , M))
 Find element not

previously found
6: f easible, solutions ← solve(E)
 Call SMT solver
7: if f easible then
8: M ← M ∪ {extract_element(solutions)}
 Add

element to M
9: end if
10: end while
11: return M
12: end function

Algorithm3 shows a general strategy for deriving themost
restrictive model. The basic idea is that we start with the
empty model and we keep adding elements to it until no
further restriction of the language is possible. Thus, this strat-
egy clearly focuses on fitness (no observed behavior is left
out) and precision (no other model can be built which has
a smaller language). A particular instantiation of this algo-
rithm is presented in Sect. 6. In detail, the algorithm is built
on the following helper functions:

– structural_equations characterizes the
constraints that derived model elements must satisfy in
order to not forbid valid sequences in the log.

– constrainable tests whether new elements can be
added to further restrict the model while accepting the
behavior from the log.

– new_element provides further constraints that enforce
the structural equations used so far in order to guide the
search for new model elements.

– solve effectively determines whereas solutions exists
after the aforementioned enforcing of the structural equa-
tions.

– extract_element extracts one solution to be added
to the model when the SMT instance is feasible.

Aswith additivemodels, this algorithm is useful as long as
some conditions aremet. For instance, the number of possible
elements in a model must be finite, and we must be able
to determine whether a model can be further restricted (the
function constrainable in line 4 must be computable).
Not all restrictive models have this property; however, Petri
nets have a well-founded theory that can be used to compute
such a termination criterion.

5 Discovering strategies for C-nets based on SMT

Recently, a formalism called Causal nets (C-nets) [11] has
been proposed as a suitable modeling language for process

123

www.manaraa.com

1062 M. Solé, J. Carmona

mining. It is an additive model that allows expressing com-
plex behavior that is sometimes difficult to describe using
other models. Unlike grammars, C-nets have a graphical
counterpart which makes them attractive in the context of
process mining.

Let us first describe with the help of a couple of simple
examples the semantics of C-nets. Figure 2a shows a log and
a C-net whose language is exactly the set of traces in the log.
The semantics of the C-net can be informally described as:

Activity a must be executed initially, since no obligations
(input arcs with dots) exist for a. It can generate obligations
to either (1) activity b, or (2) activity c or (3) activities b and
c. Any of the these three possibilities requires the execution
of the corresponding activities, consuming the obligation(s)
from activity a and generating obligation(s) to activity e.
The final execution of e will empty the set of obligations and
therefore will lead to a valid trace.

Figure 2b (from [11]) shows a more meaningful exam-
ple, describing a C-net that models the process of booking
resources for travel. By considering the informal semantics
described in the C-net of Fig. 2a, we let as an exercise for
the reader to check whether only the traces listed in the log
belong to the language of the C-net. The following section
provides the formal definition of C-nets.

5.1 Causal nets (C-nets)

Definition 1 (Causal net [11]) A C-net is a tuple C =
〈A, as, ae, I, O〉, where A is a finite set of activities, as ∈ A
is the start activity, ae ∈ A is the end activity and I (and O)
are the set of possible input (output resp.) bindings per activ-
ity. Formally, both I and O are functions A → SA, where
SA = {X ⊆ P(A) | X = {∅} ∨ ∅ /∈ X}, and satisfy the
following conditions:

– {as} = {a | I (a) = {∅}} and {ae} = {a | O(a) = {∅}}
– all the activities in the graph (A, arcs(C)) are on a path

from as to ae, where arcs(C) is the dependency relation
induced by I and O such that arcs(C) = {(a1, a2) | a1 ∈⋃

X∈I(a2) X ∧ a2 ∈ ⋃
Y∈O(a1) Y}.

Definition 1 slightly differs from the original one from
[11], where the set arcs(C) is explicitly defined in the
tuple. The C-net of Fig. 2a is formally defined as C =
〈{a, b, c, e}, a, e, I, O〉, with I (a) = {∅}, O(a) = {{b}, {c},
{b, c}}, I (b) = {{a}}, O(b) = {{e}}, I (c) = {{a}},
O(c) = {{e}}, I (e) = {{b}, {c}, {b, c}} and O(e) =
{∅}. The dependency relation of C , which corresponds
graphically to the arcs in the figure, in this case is:
arcs(C) = {(a, b), (a, c), (b, e), (c, e)}. The activity bind-
ings are denoted in the figure as dots in the arcs, e.g.,
{b} ∈ O(a) is represented by the dot in the arc (a, b) that is
next to activity a, while {a} ∈ I (b) is the dot in arc (a, b)
next to b. Non-singleton activity bindings are represented

by circular segments connecting the dots: {b, c} ∈ O(a) is
represented by the two dots in arcs (a, b), (a, c) that are con-
nected through a circular segment.

Definition 2 (Binding, binding sequence, activity projec-
tion) Given a C-net 〈A, as, ae, I, O〉, B = {(a, SI , SO)|a ∈
A∧SI ∈ I (a)∧SO ∈ O(a)} is the set of activity bindings. A
binding sequence β ∈ B∗ is a sequence of activity bindings.
Given a binding sequence β = (a1, SI1 , SO1) . . . (a|β|, SI|β|,
SO|β|), its activity projection is the activity sequence denoted
by σβ = a1 . . . a|β|. Bindings from a binding sequence β, we
obtain an activity sequence denoted as σβ .

Two binding sequences of the C-net in Fig. 2a are: β1 =
(a,∅, {b})(b, {a}, {e}) (e, {b},∅) and β2 = (a,∅, {b, c})
(c, {a}, {e})(e, {c},∅). The projection of β1 is σβ1 = abe.

The semantics of a C-net are achieved by selecting, among
all the possible binding sequences, the ones satisfying certain
properties. These sequenceswill form the set of valid binding
sequences of the C-net, and their corresponding projection
(see Definition 2) will define the language of the C-net. The
next definition addresses this.

Definition 3 (State, valid binding sequence, language)Given
a C-net C = 〈A, as, ae, I, O〉, its state space S = B(A× A)

is composed of states that are bags of obligations (activity
2-tuples). An obligation (a, b) expresses that activity a has
executed and expects b to execute. When this obligation is
satisfied, it is removed from the state and thus a state infor-
mally represents the bag of pending (i.e., not yet satisfied)
obligations. The state reached by theC-net after the execution
of a binding sequence β is defined with the help of a func-
tion ψ : It maps sequences of bindings (formally B∗, where
B is the set of bindings of Definition 2) to the state space
S. Function ψ : B∗ → S defined inductively: ψ(ε) = ∅
and ψ(β · (a, SI , SO)) = ψ(β) − (SI × {a}) + ({a} × SO).
The binding sequence β = (a1, SI1 , SO1) . . . (a|β|, SI|β|, SO|β|)
is said to be valid if the following conditions hold:

1. a1 = as , a|β| = ae and ∀k : 1 < k < |β|, ak ∈ A\{as, ae}
2. ∀k : 1 ≤ k ≤ |β|, (SIk × {ak}) ⊆ ψ(β←k)

3. ψ(β) = ∅
The set of all valid binding sequences of C is denoted as
V (C). The language of C , denoted by L(C), is the set
of activity sequences that correspond to a valid binding
sequence of C , i.e., L(C) = {σβ | β ∈ V (C)}.
For instance, in Fig. 2a, β1 is a valid binding sequence, while
β2 is not, since the final state is not empty (condition 3 is vio-
lated). The language of that C-net is {abe, ace, abce, acbe}.

5.2 C-net discovery

Given a log L , the problem tackled in this section is to derive
a C-net C that addresses satisfactorily the factors described

123

www.manaraa.com

Encoding process discovery problems in SMT 1063

in Sect. 3.2. Concretely, we tackle fitness by guaranteeing
that all the sequences of the log belong to the language of the
model, simplicity by minimizing the structural elements of
the net andprecision because by removing unnecessary struc-
tural elements we also restrict the language of the model. We
now present a method to accomplish this, based on encoding
the discovery problem as an SMT instance.

5.2.1 Protobinding sequences of a log

In Sect. 5.1, we have seen first the definition of a C-net and
then the definition of the valid sequences of bindings it can
produce. To discover a C-net from a log, we follow the same
path but in the opposite direction: We will define sequences
of triples representing unrestricted bindings that satisfy some
properties. Then, we will show that given these sequences, it
is possible to obtain a C-net C such that these sequences are
actually valid sequences of bindings ofC . Consequently, this
transforms the discovery problem for C-nets into the problem
of deriving these sequences of triples from the sequences in
the log. Let us first formalize the concept of protobinding:

Definition 4 (Protobinding, well-formed protobinding seq.)
A triple (a, X,Y) is a protobinding if a is an element and both
X andY are sets.A sequenceβ = (a1, X1,Y1) . . . (a|β|, X |β|,
Y|β|) of protobindings iswell-formed if it satisfies the follow-
ing conditions:

(W1) ∀i : 1 < i ≤ |β|, Xi �= ∅ ∧ ai �= a1
(W2) ∀i : 1 ≤ i < |β|,Yi �= ∅ ∧ ai �= a|β|
(W3) X1 = Y|β| = ∅
(W4) ∀i : 1 ≤ i ≤ |β|, ψ(β←i) ⊇ (Xi × {ai })
(W5) ψ(β) = ∅
Given a set B of well-formed sequences of protobindings,
it is possible to characterize the C-nets such that their set of
valid sequences of bindings contain the sequences of proto-
bindings in B, as the next theorem states.

Theorem 1 ([12]) Given a set of well-formed protobinding
sequences B with identical initial and final activities as and
ae, respectively, the tuple C = 〈A, as, ae, I, O〉 with:
(T1) A = {a | ∃β ∈ B : (a, X,Y) ∈ β}
(T2) ∀a ∈ A, I (a) = {X | ∃β ∈ B, ∃Y : (a, X,Y) ∈ β}
(T3) ∀a ∈ A, O(a) = {Y | ∃β ∈ B, ∃X : (a, X,Y) ∈ β}

is a C-net such that V (C) ⊇ B.

The theorem allows an easy conversion from protobind-
ing sequences to C-nets, so that the C-net discovery problem
from a log L can be reduced to the following problem: Given
a log L , compute a well-formed protobinding sequence for
each sequence in L . Since, by definition, all sequences in the
log have the same initial and final activities, all the protobind-
ing sequences will also have; thus, we can use Theorem 1 to
discover a C-net.

Although the theorem does not consider all the C-nets
whose valid binding sequences include the protobinding
sequences B, it was proven in [12] that it gives always the
smallest C-net (in terms of valid binding sequences and also
in terms of number of structural elements of the C-net) that
can generate the sequences in B.

In the next section, we explain how we can encode as
linear constraints the problem of computing the sequences
of protobindings.

5.2.2 Encoding the problem as linear constraints

Given a sequenceσ of a log L , it is trivial to build a protobind-
ing sequenceβσ out of it asβσ = (σ1, X1,Y1) . . . (σ|σ |, X |σ |,
Y|σ |). The difficult part is to ensure that βσ is actually well
formed.Wewill encode the unknown Xi (input bindings) and
Yi (output bindings) sets using integer variables and then
define the linear constraints that will guarantee that βσ is
well-formed. We start by delimiting the values that the Xi

and Yi unknowns can take using the following property:

Property 1 ([12]) Let σ be a sequence of activities. Consider
the protobinding sequence βσ = (σ1, X1,Y1) . . . (σ|σ |, X |σ |,
Y|σ |). If βσ is well-formed, then ∀i : 1 ≤ i ≤ |σ |, Xi ⊆
Aσ←i ∧ Yi ⊆ Aσi→ .

To encode arithmetically the sets Xi and Yi for each βσ ,
we use an integer variable over the domain {0, 1} (i.e., a
Boolean variable, although we treat it as an integer in this
section) to encode the fact that a particular activity belongs
to the set. In particular, we use a variable xσ,i,(a,σi) to indicate
whether activity a belongs to Xi in βσ or not. Note that
the subscript contains one redundant element (σi) that we
keep for readability. The other elements are necessary: σ

allows us to distinguish the variables assigned to different
sequences, i avoids confusion between variables when the
same activity appears in different positions of σ and a is
required to identify the obligation consumed. As usual when
sets are encoded using characteristic functions we use the
following semantics:

xσ,i,(a,σi) =
{
1 if a ∈ Xi inβσ

0 otherwise.

Similarly, the variable yσ,i,(σi ,a) indicates if a belongs to Yi
in βσ . Due to Property 1, the activity a for variables in Xi

can only be chosen among the alphabet of prefix σ←i , i.e.,
Aσ←i , while in y variables it is restricted to the alphabet of
the suffix of σ after ai , i.e., Aσi→ . We denote byX and Y the
set of all x and all y variables, respectively.

We will now rewrite the conditions (W1,W2,W3,W4 and
W5) of Definition 4 for describing a well-formed proto-
binding sequence βσ = (σ1, X1,Y1) . . . (σ|σ |, X |σ |, Y|σ |) as
inequalities using the X and Y variables.

123

www.manaraa.com

1064 M. Solé, J. Carmona

Condition W1 In this case, part of the condition is already
guaranteed, since our definition of log already assumes that
the initial activity only appears once. Thus the condition
simplifies to requiring that every Xi (except X1) must be
non-empty:

∀i : 1 < i ≤ |σ |, ∑

a∈Aσ←i

xσ,i,(a,σi) ≥ 1

(1)

Condition W2 This is the symmetrical case to W1 but with
theYi sets. Since the uniqueness of the final activity is already
guaranteed,wemust only enforce that theYi sets (exceptY|σ |)
are non-empty:

∀i : 1 ≤ i < |σ |, ∑

a∈Aσi→
yσ,i,(σi ,a) ≥ 1

(2)

Condition W3 This needs no conversion, since we can
directly assign the empty set to X1 and Y|σ |. Note that the
model does not even generate any variable in X or Y to rep-
resent these sets, since Aσ←1 = Aσ|σ |→ = ∅.

Condition W4 This condition requires that the state of oblig-
ations after executing prefix β←i (i.e., ψ(β←i)) contains,
at least, the obligations in (Xi × {σi }). This is the same as
requiring that the number of obligations of the type (a, σi)

in ψ(β←i) is larger or equal than the number of obligations
(a, σi) in (Xi × {σi }). Moreover, if σi is the last occurrence
of that activity, condition W5 applies instead, since there
cannot be pending obligations in the final state, so the last
occurrence of an activity must consume all the obligations
for it. The number of such obligations in ψ(β←i) can be
computed by summing the number of times the obligation
has been produced minus the number of times it has been
already consumed before the execution of σi .

∀i : (
1 ≤ i ≤ |σ | ∧ ∃ j : (

j > i ∧ σ j = σi
))

,∀a ∈ Aσ←i ,
∑

k:k<i∧σk=a
yσ,k,(a,σi) − ∑

m:m≤i∧σm=σi

xσ,m,(a,σi) ≥ 0

(3)

where the first term in the subtraction from Eq. (3) describes
the obligations generated up to a given point, whereas the
second term considers the obligations consumed.

Condition W5 To enforce that the final number of obliga-
tions must be zero, we require that the number of (a, σi)

obligations is exactly zero after the last execution of σi in
the sequence. Since it is simply a stronger version of (3), it
replaces (3) in the last execution of σi .

∀i : (
1 ≤ i ≤ |σ | ∧ ∀ j

(
j > i ⇒ σ j �= σi

))
,∀a ∈ Aσ←i ,

∑

k:k<i∧σk=a
yσ,k,(a,σi) − ∑

m:m≤i∧σm=σi

xσ,m,(a,σi) = 0

(4)

Definition 5 (Structural equations) The set of equations
for a C-net including the behavior of a log L , denoted by
structural_equations(L), is the set obtained by joining the
set of Eqs. (1), (2), (3) and (4) for every σ ∈ L .

Example 1 Consider the sequence σβ = abcbe, so that β =
(a1, X1,Y1)
(a2, X2,Y2) (a3, X3,Y3)(a4, X4,Y4)(a5, X5,Y5) with a1 =
a, a2 = b, a3 = c, a4 = b, a5 = e, and X1 = Y5 = ∅.
Table 1 shows the structural equations for each prefix in the
sequence.

Note that in this table some of the equations for i = 1
are empty since Aσ←1 = ∅, a similar case to that of i = 5
and (2), because Aσ5→ = ∅. Moreover, (4) is used instead of
(3) for i ∈ {3, 4, 5} because these are the last executions of
activities c, b and e, respectively.

In summary, by finding the satisfying assignments to the
X and Y variables in the equations arising from a log, one
can derive a C-net that includes the language of the log3.
In terms of complexity, the number of variables that each
activity occurrence generates is |A|; thus, for a sequence σ ,
the total number of variables generated is |A| · |σ |. Hence,
the total number of variables for a log L is |A| · ∑

σ∈L |σ |,
which is O (|L| · |A| · maxσ∈L (|σ |)).

Depending on the input formula, SMT solvers either con-
vert it into a SAT problem or can use tailored strategies for
the non-Boolean parts present in the formula. Given the mix-
ture of linear and Boolean equations that form the problem
described above,we use the following conventionwhen com-
puting the number of formulas that form the SMT problem:

3 Remarkably, the SMT technique proposed can be applied individu-
ally to every trace of the log, which allows to independently solve the
problem when complexity issues may arise.

123

www.manaraa.com

Encoding process discovery problems in SMT 1065

Table 1 Structural equations
for sequence abcbe i = 1 σ←1 = ε, σ1 = a, σ1→ = bcbe, Aσ←1 = ∅, Aσ1→ = {b, c, e}I

(1) –

(2) yσ,1,(a,b) + yσ,1,(a,c) + yσ,1,(a,e) ≥ 1

(3) –

i = 2 σ←2 = a, σ2 = b, σ2→ = cbe, Aσ←2 = {a}, Aσ2→ = {b, c, e}I
(1) xσ,2,(a,b) ≥ 1

(2) yσ,2,(b,b) + yσ,2,(b,c) + yσ,2,(b,e) ≥ 1

(3) yσ,1,(a,b) − xσ,2,(a,b) ≥ 0

i = 3 σ←3 = ab, σ3 = c, σ3→ = be, Aσ←3 = {a, b}, Aσ3→ = {b, e}I
(1) xσ,3,(a,c) + xσ,3,(b,c) ≥ 1

(2) yσ,3,(c,b) + yσ,3,(c,e) ≥ 1

(4) yσ,1,(a,c) − xσ,3,(a,c) = 0 and yσ,2,(b,c) − xσ,3,(b,c) = 0

i = 4 σ←4 = abc, σ4 = b, σ4→ = e, Aσ←4 = {a, b, c}, Aσ4→ = {e}I
(1) xσ,4,(a,b) + xσ,4,(b,b) + xσ,4,(c,b) ≥ 1

(2) yσ,4,(b,e) ≥ 1

(4) yσ,1,(a,b) − xσ,2,(a,b) − xσ,4,(a,b) = 0, yσ,2,(b,b) − xσ,4,(b,b) = 0 and

yσ,3,(c,b) − xσ,4,(c,b) = 0

i = 5 σ←5 = abcb, σ5 = e, σ5→ = ε, Aσ←5 = {a, b, c}, Aσ5→ = ∅I
(1) xσ,5,(a,e) + xσ,5,(b,e) + xσ,5,(c,e) ≥ 1

(2) –

(4) yσ,1,(a,e) − xσ,5,(a,e) = 0, yσ,2,(b,e) + yσ,4,(b,e) − xσ,5,(b,e) = 0 and

yσ,3,(c,e) − xσ,5,(c,e) = 0

We give both the number of linear equations and Boolean
disjunctive clauses that form each equation. To count the
disjunctive clauses we assume that every linear equation
appearing in a Boolean formula is substituted by a dummy
Boolean variable, and then the Boolean formula is expressed
in CNF. Using this definition, the number of equations is
summarized in the following table:

Equation in SMT
problem

Linear equations
(per σi)

Disjunctive clauses
(per σi)

(1) 1 –
(2) 1 –
(3) and (4) |Aσi−1 | –

Thus for an activity σi ∈ σ we have |Aσi−1 | + 2 linear
equations. So for a sequence σ , the maximum number of
equations isO(|A| · |σ |). Therefore, the whole log L requires
O(|L| · |A| ·maxσ∈L(|σ |)) equations, the same as the number
of variables. Next sections illustrate how to algorithmically
solve the discovery problem described in this section.

5.2.3 Solving linear constraints using SMT

The main goal of this section is to show how to solve the
problem of discovery in the SMT domain. SMT solvers for
the theory of quantifier-free bit-vector arithmetic [20] can

model Eqs. (1)–(4). Additionally, they can naturally encode
the bound on the number of arcs in the C-net, as well as some
other constraints (for instance, the heuristics for limiting the
number of input/output bindings per activity or limiting the
earliest time an activity can be executed as presented in [12],
or the formulas of Sect. 5.4).

Variables in X and Y are all Boolean, so obtaining
a Boolean formula that represents the model is possible.
Now let us show how (1), (2), (3) and (4) can be encoded
as Boolean formulas. Equations (1) and (2) are trivial,
since they correspond to a disjunction. For instance, the
inequality (1):

∑
a∈Aσ←i

xσ,i,(a,σi) ≥ 1 can be rewritten as
∨

a∈Aσ←i
xσ,i,(a,σi) = 1. Equations (3) and (4) are pseudo-

Boolean (i.e.they are lineal combinations of binary variables)
which can be also expressed using the quantifier-free bit-
vector arithmetic (for instance, encoding them using adders).

Note that these equations (ignoring the formulas used by
the heuristics) can be also solved by pseudo-Boolean solvers,
so in the experiments (Sect. 7) we will also compare the
strategy of using the quantifier-free bit-vector arithmeticwith
them, when this is possible (if only heuristics that can be
expressed as pseudo-Boolean formulas are used).

5.2.4 Adding a cost function

Due to the additive nature of C-nets, reducing the number of
arcs tends to restrict the language of the net. Fortunately, it

123

www.manaraa.com

1066 M. Solé, J. Carmona

is possible to encode an expression as an SMT formula that
bounds the number of arcs in the derived C-net. To accom-
plish this, we can use any of the sets X or Y . Without loss
of generality, we use set X . For readability we introduce an
auxiliary notation to denote the subset of variables in X that
correspond to a given binding (a, b) in the sequences of a
log L . Namely, X(a,b)(L) = {xσ,i,(a,b) | ∃σ ∈ L : σi =
b ∧ a ∈ Aσ←i }. We can now characterize in an SMT for-
mula the number of arcs in the C-net obtained through T1,
T2 and T3 (Theorem 1) using the following pseudo-Boolean
expression (in which we abuse notation so that the logical Or
is interpreted as binary value that can added in the summa-
tion):

number_of_arcs(L)
def= ∑

a∈AL

∑

b∈AL

∨
x∈X(a,b)(L) x

Then, the equation bounding the number of arcs is:

bound_arcs(L , l)
def= number_of_arcs(L) ≤ l (5)

In terms of complexity, we have the following number of
equations:

Equation in SMT
problem

Linear equations # Disjunctive clauses

(5) 1 |A| · ∑
σ∈L |σ |

In Sect. 5.3, we use this equation to find the C-net whose
language includes the log L and has the minimum number of
arcs. Since we will explore the solution space using a binary
search strategy, we need to derive lower and upper bounds
on the number of arcs that the C-net can have.

An upper bound can be obtained by counting the arcs
of a trivial C-net that includes the language of the log (the
“immediately follows” C-net of [12]). Given a log L , the
“immediately follows” C-net can replay all the sequences
in L and is based on the immediately follows relation [21]
between the activities in L , denoted by <L and defined as
<L= {(σi , σi+1) | ∃σ ∈ L ∧ 1 ≤ i < |σ |}.
Definition 6 (Immediately follows C-net) Given a log L , the
“immediately follows” C-net of L , denoted by CIF(L), is
the C-net 〈A, as, ae, I, O〉 such that: (i) A = AL , (ii) ∀σ ∈
L , σ1 = as ∧ σ|σ | = ae, (iii) ∀a ∈ A, O(a) = {{b} | a <L

b} ∧ I (a) = {{b} | b <L a}. Trivially, LCIF(L) ⊇ L .

In Fig. 3, we can see the “immediately follows” C-net of
the log in Fig. 1 ({abce, acbe}). It is easy to check that the
language of the C-net includes the two sequences of the log
and many more.

a

b

c

e

Fig. 3 “Immediately follows”C-net of the log in Fig. 1 ({abce, acbe}).
New traces like abcbce are valid in this C-net

A possible lower bound is given by |AL |−1, which is the
minimum number of arcs to guarantee that all the activities
in the log are connected, although tighter lower bound can
be given in some scenarios (see [12] for the details).

5.3 The algorithm

In Algorithm 4, we give the pseudocode of the proposed
approach (notice that it is an instantiation of the general algo-
rithm described in Sect. 4.1). The main idea is to build the
structural equations mandatory to any C-net whose language
includes a given log L (thus guaranteeing fitness) and then
bound the number of arcs allowed in the solution. Following
the outcome of the SMT solver, the bound is changed, so
that we minimize the number of arcs using a binary search
strategy, thus increasing the simplicity of the model. Once
the number of arcs cannot be further decreased, a final step
removes all redundant bindings.

Algorithm 4 Discover minimal C-net
1: function discoverMinCnet(L)
2: C = 〈A, as , ae, I, O〉 ← CIF(L)
 See Sect. 5.2
3: min ← |A|
4: max ← |arcs(C)| − 1
5: Es ← structural_equations(L)

6: while min ≤ max do
7: avg ← �(min + max)/2
8: E ← Es ∧ bound_arcs(L , avg)
 Add (5)
9: f easible, solutions ← solve(E)
 Call SMT solver
10: if f easible then
11: C ← extract_cnet(solutions)
 Model feasible
12: max ← |arcs(C)| − 1
 Since |arcs(C)| ≤ avg
13: else
14: min ← avg + 1
 Model unfeasible
15: end if
16: end while
17: C ← binding_minimization(C)
 See Sect. 5.4
18: return C
19: end function

To obtain reasonable initial bounds for the binary search,
we use the connectivity argument of Sect. 5.2.4 for a lower
bound (line 3) requiring at least asmany arcs as the number of
different activities and the number of arcs in the “immediately
follows” C-net for the upper bound (line 4)4.

4 Although the minimum number of arcs required to guarantee that all
activities are connected is |A|−1, the minimum bound in the algorithm

123

www.manaraa.com

Encoding process discovery problems in SMT 1067

Fig. 4 Redundant bindings in a
C-net discovered using an
SMT-based approach. The
binding_minimization
algorithm (Sect. 5.4) is able to
generate (a) starting from (b)

(a)

a

b c

d e

f

(b)

a

b c

d e

f

The algorithm contains three calls to functions that either
are specializations of functions in Algorithm 1 or have
not been yet introduced. One is function solve(E) which
calls the SMT solver on the set of equations E and returns
two values: feasible that is a Boolean value indicating
whether the solver found a solution to the equations in
E and solutions that contains the values of the X and Y
variables in case the problem was feasible. The second func-
tion, extract_cnet(solutions), simply builds a C-net
from the values of the variables in sets X and Y using
the principles explained in Theorem 1. Finally, the func-
tion binding_minimization, explained in Sect. 5.4,
removes the largest set of input/output bindings that are
redundant. We illustrate with an example how redundant
bindings might appear in the C-nets produced before this
function is called.

Example 2 Consider the log L = {abcf , adef , abcdef ,
adebcf , abcdebcf } which can be described by the C-net
of Fig. 4a. However, a possible output for the SMT-based
approach is given in Fig. 4b which has two additional bind-
ings, marked with dashed arcs. In particular, the model in
Fig. 4b allows the sequences of activities bc and de to inter-
leave. This is a valid possibility in the sequences abcde f
and adebc f of L . Since both models have the same num-
ber of arcs, the algorithm does not prefer one C-net over the
other. In this example, it is clear that the C-net in Fig. 4b can
be improved by minimizing the number of bindings in the
model.

Since the minimization of bindings is achieved by solv-
ing a related but somewhat different SMT problem, we will
explain the details of this technique in the next section. The
following theorem is the main result of this section:

Theorem 2 Let C be the C-net returned by Algorithm 4 exe-
cuted on a log L. The language of C includes L, there is no
other C-net including L that has less arcs than C, and C
contains no redundant binding.

Footnote 4 continued
is set to |A|. This is because there is a single model that has |A|−1 arcs,
which corresponds to a sequence of activities. If this model is feasible,
then it should have been already found in CIF(L), thus |arcs(C)| =
|A|−1 and the algorithmwould never enter the loop and returnCIF(L).
On the other hand, if |arcs(C)| > |A| − 1, then there is no feasible
model with just |A| − 1 arcs; thus, the minimum search bound can be
set to |A|.

Proof In [12], it was already proved that an algorithm equal
to Algorithm 4 but without the call to the binding_
minimization function yields a C-net C ′ such that the
language of C ′ includes L and there is no other C-net
including L that has less arcs than C ′. Since the function
binding_minimization removes all redundant bind-
ings from C ′, we obtain a C-net C that still satisfies the two
previous conditions but contains no redundant binding. ��

5.4 C-net replay and binding minimization

Given a particular activity sequence and a C-net, the replay
problem is to find the valid binding sequence of the net whose
projection is the activity sequence. The problem can be gen-
eralized to sets of activity sequences (i.e., a log). This is
a relevant problem, since it allows determining whether a
particular activity sequence belongs to the language of a C-
net, which is a fundamental knowledge to effectively use the
model. As we see in this section, the replay problem for C-
nets is much more complex than in other models, but can be
solved using an SMT approach. Moreover, the SMT equa-
tions can be later reused for other interesting applications,
like removing redundant bindings. In this section, a brief
informal description of C-net replay and binding minimiza-
tion is provided, which is developed further in [13].

The replay of a log L in a given C-net C can be expressed
also as an SMT problem, by using the structural equations of
L: In structural_equations(L) some variables are removed,
to reflect that some dependencies between activities are no
longer possible. This is because they do not appear in C (we
call these equations the skeleton of C). Additionally, a set of
equations is incorporated that restricts the possible assign-
ments of the X and Y variables to the set of input and output
bindings in C . Although alternative replay methods based
on exploring the state space of bindings are possible, this
approach has some advantages. First of all, only exponen-
tial techniques are known for the problem of C-net replay
(although the problem is known to be in NP) 5. Second, the
replay problem of all the log can be solved in a single SMT
problem instance (which is NP-complete). Finally, the SMT-

5 One can notice this with the simple example of Fig. 2b: To replay the
occurrence of activity a, the three output bindings should be considered
as potential successor states, in general to proceed with the replay any
of them can be combined with the occurrences of the sequent activities,
which in turn may introduce new output binding possibilities.

123

www.manaraa.com

1068 M. Solé, J. Carmona

based replay will be the basis to minimize the number of
bindings of a C-net.

Formally, given a C-net C = 〈A, as, ae, I, O〉 and a log
L , we denote the skeleton of C as skeleton(C, L), which is
defined as:

skeleton(C, L)
def= structural_equations(L) ∧ ∧

x∈X(a,b):(a,b)/∈arcs(C) x ∧ ∧
y∈Y(a,b):(a,b)/∈arcs(C) y

Basically, in the formula above we set all the variables repre-
senting arcs not found in C to false, hence invalidating these
arcs to be used in the replay.

Similarly, the equations that restrict the choices of input/
output bindings, denoted as restrict_choices(C, L), corre-
spond to:

restrict_choices(C, L)
def= ∧

σ∈L
(∧

1<i≤|σ |
∨

S∈I (σi) Xi = S ∧∧
1≤i<|σ |

∨
S∈O(σi)

Yi = S
)

These equations enforce that the input and output bindings
can only be the ones present in C-netC . We define the replay
SMT problem replay(C, L) as:

replay(C, L)
def= skeleton(C, L) ∧ restrict_choices(C, L)

The solution to this SMT problem is the set of values of the
X and Y variables from which the Xi and Yi sets can be
reconstructed. This means that from each sequence σ in the
log, we can obtain a valid binding sequence β of C-net C
such that act(β) = σ .

Theorem 3 ([13]) The equations replay(C, L) have a solu-
tion if, and only if, every sequence σ in L is replayable by
C.

In terms of the number of equations required by replay
(C, L) consider first the predicate skeleton(C, L). The first
approximationwould be to consider it as the same asymptotic
number of equations as structural_equations(L), i.e.O(|L| ·
|AL | · maxσ∈L(|σ |)) (see Sect. 5.2.3). However, since only
the obligations for which an arc exists in C are allowed,
the number of equations can be directly reduced, instead
of explicitly negating the variables representing arcs not
found in C . This reduction contributes to further reduce
the amount of variables that each activity generates to the
incoming/outgoing arcs that it has on the C-net C . If we
denote the set of incoming/outgoing arcs of activity a in C

as arcs(C, a), the number of equations in formula skeleton
(C, L) is O(|L| · max∀a∈AL (|arcs(C, a)|) · maxσ∈L(|σ |)).

On the other hand, the predicate restrict_choices(C, L)
has a set of equalities for each input/output binding. The

number of terms required to express this set equality (e.g.,
Xi = S) is restricted by the corresponding arcs in C
and thus max∀a∈AL (|arcs(C, a)|) in the worst case. Given
that the number of set equalities depends on the number
of input/output bindings, we obtain O(|L| · maxσ∈L(|σ |) ·
max∀a∈AL (|I (a)| + |O(a)|) · max∀a∈AL (|arcs(C, a)|)).

Equation in
SMT problem

Linear equations # Disjunctive clauses

skeleton(C, L) O(|L| · max∀a∈AL (|arcs
(C, a)|) ·maxσ∈L(|σ |))

–

restrict_
choices(C, L)

O(|L| · maxσ∈L (|σ |) ·
max∀a∈AL (|I (a)| +
|O(a)|) · max∀a∈AL

(|arcs(C, a)|))

O(|L|·maxσ∈L (|σ |)·
max∀a∈AL (|I (a)|+
|O(a)|)·max∀a∈AL

(|arcs(C, a)|))

The mechanism by which input and output bindings of a
C-net can be minimized is closely related to the SMT-based
replay. The basic idea is to build an SMT replay problem in
which we add an additional equation, enforcing that at least
a given number of bindings are not used during the C-net
replay. In other words, given an l, the replay problem then
becomes: is it possible to replay the net without using at least
l of its bindings?. Once we know how to establish this bound
on the number of unused bindings, by performing a binary
search we can maximize them, thus minimizing the number
of required C-net bindings.

Formally, the quantity to maximize, expressed as a
pseudo-Boolean formula (in which the logical And of
Boolean variables is treated as an integer binary variable that
can be added in the summation) is:

unused(C, L)
def=

∑

a∈A

∑

S∈(I (a)∪O(a))

∧

σ∈L

∧

σi=a

(Xi �= S ∨ Yi �= S)

123

www.manaraa.com

Encoding process discovery problems in SMT 1069

Fig. 5 Petri net discovery: a
log, b discovered Petri net

1 r, s, sb, p, ac, ap, c
2 r, sb, em, p, ac, ap, c
3 r, sb, p, em, ac, rj, rs, c
4 r, em, sb, p, ac, ap, c
5 r, sb, s, p, ac, rj, rs, c
6 r, sb,p, s, ac, ap, c
7 r, sb, p, em, ac, ap, c

(a)

r

sb

s

em

p

ac

rj

ap

rs

c

(b)

where the condition
∧

σ∈L
∧

σi=a Xi �= S expresses the fact
that a particular input binding S of C does not appear in
any of the valid binding sequences replayed. The sum of
all these conditions (including the symmetrical conditions
on the output bindings) gives the number of unused bindings
during the replay. Thus, given a (lower) limit l on the number
of unused bindings, the SMT problem built is:

min_unused(C, L , l)
def= replay(C, L) ∧ (unused(C, L) ≥ l)

To perform a binary search, wemust provide a range of possi-
ble values for the parameter l. The lower bound of this range
is clearly zero, since it is possible that the C-net requires all
its bindings. On the other hand, if C contains n bindings,
it is possible to give a tighter upper bound than simply n.
In particular, any activity that is not the initial nor the final
one, must have at least one input and one output bindings,
while the initial (final) activity must have at least one out-
put (input) binding. Thus, if C contains |A| activities, this
means that at least (|A| − 2) · 2+ 2 bindings are required, so
n − 2 |A| + 2 is a valid upper bound. This upper bound can
be further improved with the information obtained during the
creation of the formula unused(C, L) as explained in [13].

5.5 A note on the selection of the SMT domain

The encoding presented in this section can be represented in
domains different from SMT. In the algebraic domain, one
option is to model Eqs. (1)–(4) from Sect. 5.2.2 in an integer
linear programming (ILP) model (but with binary variables)
and use one of the available solvers. However, such an option
has an important drawback: The cost function used to mini-
mize the solution to the problemmust be linear. A possibility
is tominimize the sum of all theX andY variables. However,
this will promote solutions like the “immediately follows” C-
net, since in that C-net every activity (except the initial and
final ones) always consumes one obligation and produces one
obligation; thus, it is not possible to have a C-net producing
less obligations. The approach for minimizing arcs described
in Sect. 5.2.4 requires expressions involving logical disjunc-
tions, which poses certain problems for ILP formulations,

requiring the introduction of auxiliary variables and addi-
tional constraints6.

In conclusion, SMT solvers provide a higher degree of
flexibility than ILP. Moreover, our tests showed that in terms
of run time they had a similar or better performance than ILP
solvers in our benchmarks.

6 Discovering strategies for Petri nets based on
SMT

6.1 Petri nets, transition systems and the theory of
regions

In this section, we provide the background necessary to
understand the technique for discovery of Petri nets based
on SMT, which is presented in Sect. 6.2. A simple example
of Petri net discovery is illustrated in Fig. 5. The technique is
grounded in the theory of regions [22], a theory that appeared
in the early nineties to provide a correspondence between an
automaton and a Petri net. For the sake of brevity, we have
chosen to present only the necessary ingredients of this theory
in this section. For a detailed description on how the theory
of regions can be applied to derive Petri nets in a general
setting, the reader can refer to [23,24].

The starting point of the algorithms presented in this
section is an automaton whose language contains all the
traces described in a log. This is without loss of general-
ity, since there are linear algorithms to convert a log into an
automaton [25]. For instance, we can see a log in Fig. 6
together with two possible transformations into a transi-
tion system (a type of automaton, see the formal definition
below) that always produce acyclic automata, although more
sophisticated techniques exist that can produce more com-
pact (and non necessarily acyclic) transformations [26,27].
The following definition formalizes the type of automata the
proposed algorithms consider:

Definition 7 (Transition system) A transition system (TS) is
defined as a tuple 〈S,Σ, T, s0〉, where S is a set of states, Σ
is an alphabet of events, T ⊆ S × Σ × S is a set of (labeled)
transitions or arcs and s0 ∈ S is the initial state.

6 For instance, z = x ∨ y is equivalent to z ≥ x , z ≥ y and z ≤ x + y.

123

www.manaraa.com

1070 M. Solé, J. Carmona

L =
abce

acbe

s0

s1

s2s3

s4s5

s6s7

a

bc

cb

ee

(b) s0

s1

s2s3

s4

s5

a

bc

c

e

b

(c)(a)

Fig. 6 a A log. b Transformation of the log into a transition system,
merging equal prefixes of sequences. c Transformation of the log into a
transition system, merging prefixes with the same number of the same
activities

We use s
e−→s′ as a shortcut for (s,e, s′) ∈ T , and we

denote its transitive closure as
∗−→. A state s′ is said to

be reachable from state s if s
∗−→s′. We extend the nota-

tion to arc sequences, i.e., s1
σ−→sn+1 if σ = e1 . . . en and

∀1≤i≤n(si ,ei , si+1) ∈ T . The language of a TS U , LU , is
the set of arc sequences feasible from the initial state.

Definition 8 (Petri net [3]) A Petri net (PN) is a tuple
(P, T,W, M0)where the sets P and T represent finite sets of
places and transitions, respectively, andW : (P ×T)∪ (T ×
P) → N is the weighted flow relation. The initial marking
M0 ∈ N

P defines the initial state of the system.

In a PN N , a transition t ∈ T is enabled in a certain
marking M if ∀p ∈ P : M(p) ≥ W (p, t) holds. Firing an
enabled transition t in M leads to the marking M ′ defined by
M ′(p) = M(p) − W (p, t) + W (t, p), for each p ∈ P , and

is denoted by M
t→ M ′. The set of all markings reachable

from the initial marking M0 is called its Reachability Set.
We say that N is k-bounded if, for all reachable marking M
and all place p, it holds that M(p) ≤ k. The Reachability
Graph of N , denoted by RG(N), is a transition system in
which the set of states is the Reachability Set, the events are
the transitions of the net and an arc (M1, t, M2) exists if and

only ifM1
t→ M2.WeuseL(N) as a shortcut forL(RG(N)).

To obtain a suitable implementation of the constrain-
able function of Algorithm 3 for the Petri nets, we must
resort to the theory of regions, which are multisets over the
states of a transition system that satisfy some conditions. To
specify these conditions, we need the concept of gradient.

Definition 9 (Gradient in a TS) Let 〈S,Σ, T, s0〉 be a TS.
Given a multiset of states r and an arc s

e−→s′ ∈ T , its

gradient is defined as δr (s
e−→s′) = r(s′) − r(s). If all the

arcs of an event e ∈ Σ have the same gradient, we say that
the event e has constant gradient, whose value is denoted as
δr (e).

6
s0

4 s1

2 s2

0 s3

3
s4

1 s5 0 s6

a b

a

a

b

a b

(a)

a

2

b

3

(b)

Fig. 7 a Transition system for the log {aaa, ab, ba, bb} and one of its
regions r : r(s0) = 6, r(s1) = 4, . . . , r(s6) = 0 in which the gradients
of the events are δr (a) = −2 and δr (b) = −3.bCorresponding feasible
place in the Petri net

Definition 10 (Region) A region r is a multiset of states
defined in a TS, in which all the events have constant gradi-
ent.

Figure 7a shows a TS with a multiset defined over the states
of the system. The numbers within the states correspond to
themultiplicity of themultiset r shown, e.g., r(s0) = 6.Mul-
tiset r is a region because both events a and b have constant
gradient, i.e., δr (a) = −2 and δr (b) = −3. It is easy to check
that these gradients are constant: For instance, every arc of
eventa has a difference of−2 between the target state and the
source state of every arc, e.g., r(s1) − r(s0) = 4− 6 = −2,
r(s5) − r(s4) = 1 − 3 = −2, etc.

There is a direct correspondence between regions and the
feasible places of a PNwith respect to the language of a TS.

Definition 11 (Feasible place)Given aTSU = 〈S,Σ, T, s0〉
and a PN Np = 〈{p},Σ,W, M0〉, we say that place p is
feasible (w.r.t.L(U)) ifL(Np) ⊇ L(U). Every region r ofU
corresponds to a feasible place p such that M0(p) = r(s0),
and W (p,e) = −δr (e) if δr (e) < 0, and W (e, p) = δr (e)

otherwise.

The gradient of the region describes the flow relation of
the corresponding place, and the multiplicity of the initial
state indicates the number of initial tokens [24]. Figure 7b
shows the feasible place corresponding to the region shown
in Fig. 7a.

Intuitively, feasible places are places that can be used to
construct a PN that will always include the language of a
TSU , since the addition of a feasible place p with language
L(Np) to a PN N yields a net N ′ such thatL(N ′) = L(N)∩
L(Np), and all feasible places p satisfy L(Np) ⊇ L(U).

6.2 Discovery of Petri nets

Although there can be large number of regions in a given
transition system (in the worst case, an exponential number
with respect to the set of states of the TS), it was proved in
[28] that the set of minimal regions is enough to constrain
the language of the net as much as possible while including

123

www.manaraa.com

Encoding process discovery problems in SMT 1071

the language of the transition system. For this reason, mini-
mal regions are relevant in Petri net discovery for obtaining
precise models. Formally, aminimal region r is a region such
that, for all regions r ′, r ′ ⊆ r ⇒ r ′ = 0, where 0 denotes the
0-bounded region. That is, it does not have a proper subregion
different than the 0-bounded region. This section focuses on
how to instruct SMT to compute the set of minimal regions
of a given TS.

Given a TS U = 〈S,Σ, T, s0〉, a k-bounded region r of
U can be encoded in SMT as follows: ∀s ∈ S, variable ms

represents the value of r(s). Similarly, the gradients of r are
encoded using a variable δe for each event e ∈ Σ .

The set of equations describing all the k-bounded regions
of a TS U = 〈S,Σ, T, s0〉, denoted by k_bounded_regions
(U, k), can be further encoded in SMT:

– ∀s ∈ S, ms ≤ k, i.e., all multiplicities are k-bounded,
and

– ∀s e−→s′ ∈ T, δe = ms′ − ms , i.e., all gradients are
constant.

k_bounded_regions(U, k)
def= ∧

s∈S ms ≤ k ∧ ∧
s

e−→s′∈T δe = ms′ − ms
(6)

As we have seen in the general algorithm (Algorithm 3),
we need a way to compute new elements (regions in this
case) at each iteration of the algorithm (general method
new_element in Algorithm 3). In our case, given that we
are only interested in minimal regions, non-minimal regions
need to be discarded. We can prune non-minimal regions
with the help of two formulas: proper_subregion(r), which
guarantees that the region found is a proper subregion of r
and ¬superregions(R) which prevents finding a region that
includes (⊆) any of the regions in a set R (this set will contain
the regions currently in the model).

The set of equations describing the regions that are proper
subregions of a region r , denoted by proper_subregion(r),
is:

–
∧

s∈S ms ≤ r(s), i.e., all multiplicities are smaller than
or equal to the ones in r , and

–
∨

s∈S ms < r(s), i.e., at least one multiplicity is strictly
smaller.

proper_subregion(r)
def= ∧

s∈S ms ≤ r(s) ∧ ∨
s∈S ms < r(s)

(7)

Conversely, the equations describing the regions that are
superregions of a region r , denoted by superregion(r) are

∧
s∈S ms ≥ r(s), i.e., all multiplicities are greater than or

equal to the multiplicities in r .

superregion(r)
def= ∧

s∈S ms ≥ r(s)
(8)

Given a set R of regions, it is easy to generate the equations
describing the regions that are superregions of at least one
region in R as

∨
r∈M superregion(r). We denote this set of

equations as superregions(R).

superregions(R)
def= ∨

r∈R superregion(r) (9)

With all the previous equations, it is possible to devise an
algorithm (see Algorithm 5) to find all minimal regions of a
transition systemU (thus generating themost restrictive Petri
net, using the k-bounded regions in the transition system, that
contains the language ofU) [28]. With respect to the general
algorithm (Algorithm 3), one should notice that Algorithm 5
is computing a finite set of regions R which will be then

translated to a Petri net using a standard construction
from [28], shown at the end of this section. Algorithm 5
contains some optimizations to increase the efficiency of
the approach by avoiding visiting particular solutions of the
region space more than once. In any case, still several parts
can be identified with respect to the general Algorithm 3:

– The structural_equations method is split into
lines 5, 8 and 11 where the combined characterization of
regions is conducted.

– An emptiness test to the stack of regions s in Algo-
rithm 5 implements the constrainable generic
method, since only when no more regions exist in s we
can certify that the model derived cannot be constrained
further.

– The extract_element function has been renamed to
extract_region, since we obtain a region r from the
solutions of a feasible SMT problem where for all states
s we have r(s) = ms .

The algorithm receives two parameters, the transition sys-
tem U and the desired region bound. The main idea is to
explore the region space from the largest region (region k, a
multiset7 in which all the multiplicities are equal to k) find-
ing each time a proper subregion of the last region found

7 This is indeed a region, since the gradient of every event is constant
and equal to zero.

123

www.manaraa.com

1072 M. Solé, J. Carmona

Algorithm 5 Discover all minimal k-bounded regions of
TSU
1: function discoverMinimalRegions(U, k)
2: R ← ∅
 Set of minimal regions
3: s ← empty_stack()
 Stack of regions to explore
4: push(s, k)
 Start with the largest k-bounded region
5: E1 ← k_bounded_regions(U, k)
 Equations describing all

k-bounded regions of U
6: while ¬empty(s) do
7: r ← top(s)
8: E2 ← ¬superregions(R)
 Eqs. forbidding all

superregions of regions in R
9: region_ f ound ← False
10: repeat
11: E3 ← proper_subregion(r)
 Eqs. describing all

proper subregions of r
12: f easible, solutions ← solve(E1 ∧ E2 ∧ E3)
 Call

SMT solver
13: if f easible then
14: r ← extract_region(solutions)
 Model feasible
15: push(s, r)
16: region_ f ound ← True
17: end if
18: until ¬ f easible
19: pop(s)
20: if region_ f ound then
21: R ← R ∪ {r}
 Add minimal region r
22: end if
23: end while
24: return R
25: end function

that is not a superregion of the minimal regions found so far
(the ones in R). Once this descending chain cannot be further
continued, a minimal k-bounded region ofU has been found,
which is added to the set R. Then the algorithm backtracks to
the previous region and asks for a proper subregion that is not
a superregion of any of the regions in the updated set R. Once
again when this chain of regions is exhausted we have found
another minimal region of U . This iteration in lines 10–18
from Algorithm 5 is not explicit in Algorithm 3 and should
be understood as a necessary minimality test preceding the
method extract_region8. This process continues until
all minimal regions have been found, as next theorem states.

Theorem 4 The set R returned by Algorithm 5 executed on
a TS U contains all the k-bounded minimal regions of U.

Proof Assume R does not contain some k-bounded mini-
mal region r of U . Since r is k-bounded, it must satisfy the
equations in E1. Thus, if r was discarded by Algorithm 5, it
must be because either it did not satisfy E2, or it has a proper
subregion. In the former case, then it is a superregion of at
least one region in R; thus, r is not minimal. In the latter

8 Testing minimality of model elements is a feature not considered in
Algorithm 3, and this is the reason why the generic algorithm (Algo-
rithm 3) and the instantiation (Algorithm 5) have a different structure.

case, since the algorithm iterates until ¬feasible is true, a
contradiction is reached. ��

We illustrate how this algorithm operates with the follow-
ing example:

Example 3 Consider the TS shown in Fig. 8b. If we use
Algorithm 5 to compute its 1-bounded minimal regions, the
first steps of the sequence of SMTproblems solved are shown
in Fig. 9. Since in this case k = 1, the algorithm starts with
region 1, denoted as ra . Smaller subregions are then found
(rb and rc) until at step 3 the problem becomes unfeasible. At
this point, rc is known to be aminimal region (note this corre-
sponds to region r0 in Fig. 8b) and thus added to R. Then the
algorithm backtracks to the last step that yield a satisfiable
problem (step 1) and asks for a subregion of rb that is not a
superregion of rc. This produces region rd which is in fact
minimal (corresponds to region r1 in Fig. 8b). The process
will continue until the last minimal region, r2 in Fig. 8b, is
found and the SMT problem built from the root node (step
0) becomes unfeasible. An example of the SMT problem to
solve to obtain step 4 is given in Table 2.

Since after the execution of the algorithm, R contains
all the minimal k-bounded regions, a PN built using these
regions (with Algorithm 6) will yield a PN such that no
other net built from k-bounded regions can have a smaller
language [28].

In terms of complexity of the SMT problem solved in each
iteration, notice that the equations describing regions should
contain at least one variable per state in the transition system
and should also encode the gradients for each event. Next
table shows a detailed count for each one of the predicates
used in Algorithm 5:

Equation in SMT problem # Linear equations # Disjunctive
clauses

k_bounded_regions(U, k) |S| + |T | –
proper_subregion(r) 2|S| 1
¬supperregion(R) |R| · |S| |R|

Notice that apart from the complexity of the encoding shown
above, the worst-case complexity of Algorithm 5 is exponen-
tial in the number of states |S|, due to the exploration in the
space of k-bounded multisets of S.

Finally, once the set of k-bounded minimal regions are
computed with Algorithm 5, the Petri net can be derived.
Algorithm 6 shows how to build a PN that includes the lan-
guage of a TS given a set of regions R of the transition
system.

123

www.manaraa.com

Encoding process discovery problems in SMT 1073

Fig. 8 a A PN. b Its
reachability graph (three
copies), in which three regions,
which form the set of minimal
regions, have been shaded (e.g.,
region r0 is r0(s0) = 1, r0(s1) =
0, r0(s2) = 0)

r0

a b

r1

c

(a)

s0 region r0

s1

s2

a b

c

s0

s1 region r1

s2

a b

c

(b)

s0

s1

s2 region r2

a b

c

Fig. 9 Several steps of the
execution of Algorithm 5 on the
TS U of Fig. 8b with k = 1.
Each step shows the contents of
the stack s if the SMT problem
was feasible; otherwise, it shows
the set of minimal regions found
so far. The label on each arc
indicates which SMT problem is
solved in each case

ra : ms0 = 1,ms1 = 1,ms2 = 1step 0

rb : ms0 = 1,ms1 = 1,ms2 = 0

ra : ms0 = 1,ms1 = 1,ms2 = 1
step 1

rc : ms0 = 1,ms1 = 0,ms2 = 0

rb : ms0 = 1,ms1 = 1,ms2 = 0

ra : ms0 = 1,ms1 = 1,ms2 = 1

step 2

Unsat
R = {rc}

step 3

rd : ms0 = 0,ms1 = 1,ms2 = 0

rb : ms0 = 1,ms1 = 1,ms2 = 0

ra : ms0 = 1,ms1 = 1,ms2 = 1

step 4

Unsat
R = {rc, rd}step 5

Unsat
R = {rc, rd}step 6

k bounded regions(U, 1) ∧
¬superregions(∅) ∧
proper subregion(ra)

k bounded regions(U, 1) ∧
¬superregions(∅) ∧
proper subregion(rb)

k bounded regions(U, 1) ∧
¬superregions(∅) ∧
proper subregion(rc)

k bounded regions(U, 1) ∧
¬superregions({rc}) ∧
proper subregion(rd)

k bounded regions(U, 1) ∧
¬superregions({rc, rd}) ∧
proper subregion(rb)

k bounded regions(U, 1) ∧
¬superregions({rc}) ∧
proper subregion(rb)

step 7 and beyond

Table 2 Equations used to
obtain step 4 in Fig. 9

Equations

k_bounded_regions(U, 1) ms0 ≤ 1 ∧ ms1 ≤ 1 ∧ ms2 ≤ 1 ∧
δa = ms1 − ms0 ∧ δb = ms1 − ms0 ∧ δc = ms2 − ms1

¬superregions({rc}) ¬(ms0 ≥ 1 ∧ ms1 ≥ 0 ∧ ms2 ≥ 0)

proper_subregion(rd) ms0 ≤ 1 ∧ ms1 ≤ 1 ∧ ms2 ≤ 0 ∧
(ms0 < 1 ∨ ms1 < 1 ∨ ms2 < 0)

7 Experiments

We have implemented Algorithms 4 and 5 in a prototype tool
that uses the STP solver [29] as the underlying SMT solver9.

9 STP translates the SMT formula to a SAT formula and then uses the
miniSAT solver, but any other SAT (or incremental SAT) tool can be
used as backend.

In this section,we evaluate the capacity of these algorithms to
derive valuable models from several logs. For the particular
case of Algorithm 4 in which only pseudo-Boolean formulas
appear, we have also compared with the CLASP solver [30].
Note that in this latter case the solver admits a cost function to
minimize and thus no binary search is required to minimize
the number of arcs.

123

www.manaraa.com

1074 M. Solé, J. Carmona

Algorithm 6 Build a PNfrom a set regions R of TSU [28]
1: function discoverPNfromRegions(U = 〈S,Σ, T, s0〉, R)
2: W ← ∅
 Initially empty flow relation
3: for r ∈ R do
4: for t ∈ Σ do
5: if δr (t) < 0 then
6: W (r, t) ← −δr (t)
7: W (t, r) ← 0
8: else
9: W (r, t) ← 0
10: W (t, r) ← δr (t)
11: end if
12: end for
13: M0(r) ← r(s0)
14: end for
15: return 〈R,Σ,W, M0〉
 Each region is a place, each event is a

transition
16: end function

Table 3 shows the results for Algorithm 4 on some small
log examples from [12] with the following information:

– |L| is the number of distinct sequences in the log,
– |σm | is the length of the largest sequence,
– |AL | is the size of the alphabet of activities,
– arcs is the number of arcs of the final C-net,
– time is the elapsed time (in seconds) required to complete
the discovery process using STP,

– id indicates if the obtained C-net was identical to the
original one, in the case where the log originated from
a C-net, or has the same language as a Petri net found
using the theory of regions,

– |X∪Y| is the number ofBoolean variables used to encode
the SMT problem,

– |E | is the number of linear equations that the SMT prob-
lem contains,

– bounds is the initial range in the number of arcs where
the binary search must take place,

– it is the number of iterations to obtain this C-net,
– column heur indicates if some of the heuristics defined
in [12] was used, where f refers to restricting the first
occurrence of activities and i (o) to limiting the number
of input (output) bindings per activity,

– column CLASP shows the time required by the CLASP
solver. In some cases this solver, which only accepts
pseudo-Boolean formulas, could not be used because
some of the formulas were not pseudo-Boolean. This is
indicated by a “–” in the table.

The results on these small benchmarks show that the
approach is, in general, able to derive valuable C-nets. It
also shows that the techniques presented in this paper should
be optimized in order to be able to deal with large inputs, as
we will report below. Algorithm 4 always generates C-nets
whose language contains the given log (fitness=1.0); more-
over, it also rediscovers the original C-nets in most of the

cases. However, two logs are not successfully discovered:
For the aalst2b benchmark, we obtain a C-net equal to
the original one, but without an arc; on the other hand, the
largest benchmark in this table (a22f0n00_1 from [31])
could not be discovered within the one hour limit used in
our experiments. In addition to the number of variables and
equations, other factors may contribute for a solver to find
a solution fast: the asymmetry between deciding whereas a
formula satisfiable or unsatisfiable, the dependence to the
number of arcs in the solution, among others. This should be
explored in future work to instruct better the usage of SMT
solvers.

To be able to process larger benchmarks, we have to resort
to a simplification heuristic (limiting the obligation alpha-
bet [12]) that only allows arcs between activities that appear
in some sequence of the log at most a distance d, where d
is a parameter called the size of the activity window. Table 4
shows the results for our previous benchmarks as well as
some larger examples also from [31]. In this case, we have
not used any other heuristic. Despite this fact, the original
models were discovered in all cases, but one benchmark.
The aalst2b benchmark is a difficult one for an arc mini-
mizing strategy, since the model contains one arc more than
the minimum number of arcs to include the language of the
log. For this example, we had themore complexAlgorithm 2,
which was capable of deriving the correct net in about 5 s.

In terms of comparisons between STP and CLASP, the
latter is an order of magnitude faster in general, except in
the largest benchmark. This suggests that if the problem can
be kept in the pseudo-Boolean domain, it is usually a better
strategy to use a specific solver for this class than a more
general solver.

To test the validity of our approach for Petri net discovery
(Sect. 6), we have compared Algorithm 5 with a state-of-
the-art discovery algorithm grounded also on the theory of
regions but using ILP techniques. In particular, we have com-
pared with the ILP plug-in in the ProM suite that uses the
Jsolve library for ILP solving. Since Algorithm 5 works on
a transition system and we initially have a log, a transforma-
tion must be performed to use the algorithm. In this case, we
have used the common final marking transformation of [26].

Table 5 shows the results for both tools. Column P/F indi-
cates the number of places and the number of arcs of the
resulting net, respectively. Column timewas the running time
to obtain the net andETC is ametric [32] describing the preci-
sion of the net. This metric quantifies howmuch behavior not
seen in the log is present in the model, where value 1.0 indi-
cates that no additional behavior is present, while values near
0.0 show that the model included lots of additional behavior.
The ETC metric is computed by counting model deviations
with respect to the log behavior, i.e., for each reachable state
s in the model that is reached by a sequence σ that is a pre-
fix of some trace in the log, the ratio |obs(σ)|

|allow(s)| is computed,

123

www.manaraa.com

Encoding process discovery problems in SMT 1075

Table 3 Results of discovery algorithm on small examples

Benchmark |L| |σm | |AL | |X ∪ Y| |E | bounds arcs it time heur id CLASP

aalst1 (Fig. 2b) 10 5 5 156 147 [6, 11] 6 2 0.3 – y 0.0

aalst2b 8 11 5 156 147 [5, 9] 6 3 0.2 – n 0.0

mixedXorAnd 3 14 7 219 162 [7, 11] 8 3 0.2 – y 0.0

a12f0n00_5 5 7 12 176 143 [12, 17] 14 3 0.1 f y –

optional1 11 8 6 413 264 [6, 10] 9 2 0.1 f,o y –

cycles 7 18 8 839 542 [8, 17] 9 3 1.3 f,i y –

a22f0n00_1 99 46 22 28,898 18,942 [22, 166] ≤39 ≥4 >1 h – n >1 h

Table 4 Results of the C-net
discovery algorithm when
heuristics to limit the number of
variables are used (activity
window of size 1)

Benchmark |L| |σm | |AL | |X ∪ Y| |E | bounds arcs it time id CLASP

aalst1 10 5 5 136 137 [6, 11] 6 2 0.0 y 0.0

aalst2b 8 11 5 240 246 [5, 9] 6 3 0.1 n 0.0

mixedXorAnd 3 14 7 89 98 [7, 11] 8 3 0.2 y 0.0

a12f0n00_5 5 7 12 72 91 [12, 17] 14 3 0.1 y 0.0

optional1 11 8 6 229 220 [6, 10] 9 2 0.1 y 0.0

cycles 7 18 8 265 288 [8, 17] 9 3 0.2 y 0.0

a22f0n00_1 99 46 22 12,827 10,369 [22, 166] 34 7 10.4 y 0.8

a22f0n00_5 836 76 22 12,1281 97,429 [22, 183] 34 7 284.9 y 21.7

a32f0n00_1 100 73 32 26,378 19,049 [32, 362] 46 8 36.9 y 3.8

a42f0n00_1 100 58 42 48,432 31,815 [42, 735] 62 9 251.9 y 309.7

Table 5 Results of the
PN discovery algorithm

Log |L| |σm | |AL | ILP Algorithm 5

P/F time ETC P/F time ETC

a32_1 100 73 32 31/73 25 0.52 32/75 26 0.52

a32_5 900 102 32 31/73 112 0.59 31/73 35 0.59

t32_1 200 360 33 30/72 288 0.37 31/74 63 0.37

t32_5 1800 379 33 30/72 9208 0.39 30/72 84 0.39

a42_1 100 58 42 44/109 154 0.35 52/134 175 0.37

a42_5 900 78 42 44/101 1557 0.41 46/107 721 0.41

where obs(σ) (allow(s)) is the set of activities observed in
the log after σ (allowed in the model at state s).

8 Related work

Process discovery is a vivid area, which has produced several
techniques in the last decade. In this section, we focus on the
relatedwork for the particularmodels that we are considering
in this paper: C-nets and Petri nets. The reader can find a
complete overview of process discovery in [2].

Being a rather novel formalism, there is only one approach
in the literature for the discovery of C-nets: the flexi-
ble heuristics miner [33]. This technique is a light-weight
method that additionally can deal with noise. However, an

artifact of this is that the derivation of fitting models is not
guaranteed, which may represent a problem in several con-
texts.

In the case of Petri nets, the first algorithm for process
discovery in the literature was the α-algorithm [21], which
is based on detecting ordering relations in the log. Although
having low complexity, the α-algorithm can only discover a
very restricted class of behaviors. To surpass this limitation,
several extensions have been presented in the literature [34–
36]. In general, these techniques are not general enough for
capturing all necessary constructs in process models [37].

A recent technique that is guided toward the discovery of
block-structured models and has low complexity has been
presented in [38]. However, this technique is guided toward

123

www.manaraa.com

1076 M. Solé, J. Carmona

a particular class of Petri nets (workflow and sound), describ-
ing a very restricted type of behaviors.

Evolutionary approaches have been also proposed to
derive unrestricted [39] or block-structured [40] Petri nets.
However, evolutionarymethods unfortunately can have prob-
lems in dealing with inputs of medium/large size.

Finally, approaches closer to our work are grounded on
the theory of regions [22], to tackle the process discov-
ery problem as we do in Sect. 6: The works [24,31,41,42]
can discover unrestricted models but may have difficulties
in handling large specifications similarly to the techniques
proposed in this paper. The techniques of this paper show
promising results, as reported in the previous section, where
a comparison with the techniques in [31] is provided.

In summary, techniques for discovery in the literature can
be split into light-weight and complex. The technique of this
paper falls in the latter class. The advantages of our tech-
nique stem from the fact that by casting the problem as an
optimization instance, different versions can be obtained by
manipulating the constraints/cost function. This distinguish-
ing feature may be explored to further improve the search for
solutions.

9 Conclusions, open problems and extensions

This paper has presented general algorithms to discover
process models from logs, for two families of processes:
additive and restrictive models. Two relevant representatives
of these families have been used to develop this general
framework, and the experimental results show that SMT
techniques can be competitive with respect to other state-
of-the-art discovery techniques. However, we believe there
is much room for improvement given that the discovery algo-
rithms presented did only use off-the-shelf SMT solvers, but
most of the equations were unchanged between different
runs of the solver. Clearly we would benefit from solvers
capable of presolving sets of equations or incrementally
add/remove equations without having to recompute every-
thing from scratch.

On the other hand, some requirements could be relaxed:
For instance, itmight be interesting to instruct theSMTsolver
to satisfy asmany structural equations (that guarantee fitness)
as possible but allowing some of them not to be satisfied (so
the overall problem is unsatisfiable) in order to achieve bet-
ter results in the cost functions. That is sacrificing fitness
to obtain a simpler model, for instance. In this regard, tech-
niques like Max-SAT [43] might prove a valuable option.

Acknowledgements This work has been partially supported by funds
from theSpanishMinistry forEconomyandCompetitiveness (MINECO)
and the European Union (FEDER funds) under Grant COMMAS (Ref.
TIN2013-46181-C2-1-R).

References

1. van der Aalst, W.M.P., Adriansyah, A., de Medeiros, A.K.A.,
Arcieri, F., Baier, T., Blickle, T., Bose, R.P.J.C., van den Brand,
P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos,
M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de
Leoni, M., Delias, P., van Dongen, B.F., Dumas, M., Dustdar, S.,
Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen, F., Goel, S.,
Günther, C., Guzzo, A., Harmon, P., ter Hofstede, A., Hoogland,
J., Ingvaldsen, J.E., Kato, K., Kuhn, R., Kumar, A., La Rosa, M.,
Maggi, F., Malerba, D., Mans, R.S., Manuel, A., McCreesh, M.,
Mello, P., Mendling, J., Montali, M., Motahari-Nezhad, H.R., zur
Muehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Rozinat,
A., Pérez, H.S., Pérez, R.S., Sepúlveda, M., Sinur, J., Soffer, P.,
Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K., Talamo,
M., Tan, W., Turner, C., Vanthienen, J., Varvaressos, G., Verbeek,
E., Verdonk, M., Vigo, R., Wang, J., Weber, B., Weidlich, M., Wei-
jters, T., Wen, L., Westergaard, M., Wynn, M.: IEEE task force on
processmining: processminingmanifesto. In:Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) Business Process Management Workshops
(1), Lecture Notes in Business Information Processing, vol. 99, pp.
169–194. Springer, New York (2011)

2. van der Aalst, W.M.P.: Process Mining—Discovery, Conformance
and Enhancement of Business Processes. Springer, New York
(2011)

3. Murata, T.: Petri Nets: properties, analysis and applications. In:
Proceedings of the IEEE, pp. 541–580 (1989)

4. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT
modulo theories: from an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(t). J. ACM 53(6), 937–977 (2006)

5. Srivastava, S., Gulwani, S., Foster, J.S.: VS3: SMT solvers for pro-
gram verification. In: Bouajjani, A., Maler, O. (eds.) CAV, Lecture
Notes in Computer Science, vol. 5643, pp. 702–708. Springer, New
York (2009)

6. Tillmann, N., Schulte, W.: Unit tests reloaded: parameterized unit
testing with symbolic execution. IEEE Softw. 23(4), 38–47 (2006)

7. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS, Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer, New York
(2008)

8. Metzner, A., Fränzle, M., Herde, C., Stierand, I.: Scheduling dis-
tributed real-time systems by satisfiability checking. In: Ng, J.K.,
Sha, L., Lee, V.C.S., Takashio, K., Ryu, M., Ni, L. (eds.) RTCSA,
pp. 409–415. IEEE Computer Society, Los Alamitos (2005)

9. Wolfman, S.A.,Weld, D.S.: The LPSAT engine& its application to
resource planning. In: Dean, T. (ed.) IJCAI, pp. 310–317. Morgan
Kaufmann, Los Altos (1999)

10. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: intro-
duction and applications. Commun. ACM 54(9), 69–77 (2011)

11. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Causal
nets: a modeling language tailored towards process discovery. In:
Katoen, J-.P., König, B. (eds.) CONCUR 2011 – Concurrency The-
ory, Lecture Notes in Computer Science, vol. 6901, pp. 28–42.
Springer, Berlin Heidelberg (2011) CONCUR, pp. 28–42 (2011)

12. Solé, M., Carmona, J.: An SMT-based discovery algorithm for C-
nets. In: Petri Nets, LNCS, vol. 7347, pp. 51–71 (2012)

13. Solé, M., Carmona, J.: Amending C-net discovery algorithms.
In: S.Y. Shin, J.C. Maldonado (eds.) Proceedings of the
28th Annual ACM Symposium on Applied Computing, SAC
’13, Coimbra, Portugal, March 18–22, 2013, pp. 1418–1425.
ACM (2013). doi:10.1145/2480362.2480628. http://doi.acm.org/
10.1145/2480362.2480628

14. Bose, R.P.J.C., van der Aalst,W.M.P.: Analysis of patient treatment
procedures. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) Business
Process Management Workshops (1), Lecture Notes in Business

123

http://dx.doi.org/10.1145/2480362.2480628
http://doi.acm.org/10.1145/2480362.2480628
http://doi.acm.org/10.1145/2480362.2480628

www.manaraa.com

Encoding process discovery problems in SMT 1077

Information Processing, vol. 99, pp. 165–166. Springer, New York
(2011)

15. R.S, Mans, Schonenberg, H., Song, M., van der Aalst, W.M.P.,
Bakker, P.J.M.: Application of process mining in healthcare—a
case study in a Dutch hospital. In: Fred, A.L.N., Filipe, J., Gamboa,
H. (eds.) BIOSTEC (Selected Papers), Communications in Com-
puter and Information Science, vol. 25, pp. 425–438. Springer,New
York (2008)

16. van der Aalst, W.M.P., Verbeek, H.M.W.E.: Process mining in web
services: the websphere case. IEEE Data Eng. Bull. 31(3), 45–48
(2008)

17. Rozinat, A., de Jong, I.S.M., Günther, C.W., van der Aalst,W.M.P.:
Process mining applied to the test process of wafer scanners in
ASML. IEEE Trans. Syst. Man Cybern. Part C 39(4), 474–479
(2009)

18. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M.,
Verdonk,M.: Auditing 2.0: using process mining to support tomor-
row’s auditor. IEEE Comput. 43(3), 90–93 (2010)

19. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality
dimensions in process discovery: the importance of fitness, preci-
sion, generalization and simplicity. Int. J. Coop. Inf. Syst. 23(1)
(2014). doi:10.1142/S0218843014400012

20. Jha, S., Limaye, R., Seshia, S.: Beaver: Engineering an efficient
SMT solver for bit-vector arithmetic. In: Bouajjani, A., Maler, O.
(eds.) Computer Aided Verification, pp. 668–674. Springer, New
York (2009)

21. van derAalst,W.M.P.,Weijters, T.,Maruster, L.:Workflowmining:
discovering process models from event logs. IEEE TKDE 16(9),
1128–1142 (2004)

22. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-structures. Part I,
II. Acta Inf. 27, 315–368 (1990)

23. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W.,
Rozenberg, G. (eds.) Petri Nets, LNCS 1491, pp. 529–586.
Springer, New York (1998)

24. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based
algorithms for deriving bounded Petri nets. IEEE Trans. Comput.
59(3), 371–384 (2010)

25. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen,
B., Kindler, E., Günther, C.: Processmining: a two-step approach to
balance between underfitting and overfitting. Softw. Syst. Model.
9(1), 87–111 (2009)

26. Solé,M., Carmona, J.: Processmining from a basis of state regions.
In: Lilius, J., Penczek, W. (eds.) Petri Nets, LNCS 6128, pp. 226–
245. Springer, New York (2010)

27. Solé, M., Carmona, J.: Region-based foldings in process discov-
ery. IEEE Trans. Knowl. Data Eng. 25(1), 192–205 (2013). doi:10.
1109/TKDE.2011.192

28. Bernardinello, L.: Synthesis of net systems. In: Marsan, M.A. (ed.)
Application and Theory of Petri Nets, LNCS, vol. 691, pp. 89–105.
Springer, New York (1993)

29. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and
arrays. In: Damm, W., Hermanns, H. (eds.) Computer Aided Veri-
fication, pp. 524–536. Springer, New York (2007)

30. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a
conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf,
J.S. (eds.) LPNMR, Lecture Notes in Computer Science. Lecture
Notes in Computer Science, vol. 4483, pp. 260–265. Springer, New
York (2007)

31. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Sere-
brenik, A.: Process discovery using integer linear programming.
In: van Hee, K.M., Valk, R. (eds.) ATPN, pp. 368–387. Springer,
New York (2008)

32. Munoz-Gama, J., Carmona, J.: A Fresh look at precision in process
conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) Business
Process Management (BPM). Springer, New York. (2010)

33. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner
(FHM). In: Chawla, N., King,I., Sperduti, A. (eds.) CIDM, pp.
310–317. IEEE, Los Alamitos (2011)

34. Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible
tasks in non-free-choice constructs. In: Proceedings of Business
ProcessManagement—13th International Conference, BPM2015,
Innsbruck, Austria, August 31–September 3, 2015, pp. 109–125
(2015)

35. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.:
Workflow mining: current status and future directions. In: Meers-
man, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS/DOA/ODBASE,
pp. 389–406. Springer, New York (2003)

36. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process
models with non-free-choice constructs. DataMin. Knowl. Discov.
15(2), 145–180 (2007)

37. van Dongen, B.F., de Medeiros, A.K.A., Wen, L.: Process mining:
overview and outlook of petri net discovery algorithms. Trans. Petri
Nets Other Models of Concurr. 2, 225–242 (2009)

38. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering
block-structured process models from event logs—a constructive
approach. In: Application and Theory of Petri Nets and Concur-
rency - 34th International Conference, PETRI NETS 2013, Milan,
Italy, June 24–28, 2013. Proceedings, pp. 311–329 (2013)

39. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.:
Genetic process mining. In: Ciardo, G., Darondeau, P. (eds.)
CATPN, LNCS, vol. 3536, pp. 48–69. Springer, New York (2005)

40. Buijs, J.C.A.M., vanDongen,B.F., vanderAalst,W.M.P.:Agenetic
algorithm for discovering process trees. In: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC 2012, Bris-
bane, Australia, June 10–15, 2012, pp. 1–8 (2012). doi:10.1109/
CEC.2012.6256458

41. Bergenthum, R., Desel, J., Lorenz, R., S.Mauser: Process min-
ing based on regions of languages. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) Business Process Management, pp. 375–383.
Springer, New York (2007)

42. Solé, M., Carmona, J.: Light region-based techniques for process
discovery. Fundam. Inform. 113(3–4), 343–376 (2011)

43. Argelich, J., Manyà, F.: Exact max-sat solvers for over-constrained
problems. J. Heuristics 12, 375–392 (2006)

Marc Solé holds a Ph.D. (2009)
in Computer Science by the
Technical University of Catalo-
nia (UPC), where he is also
an Assistant Professor in the
Computer Science Faculty of
Barcelona. His Ph.D. thesis was
focused on automated formal
verification of timed concur-
rent systems. His research inter-
ests include formal verification,
process mining, data anonymiza-
tion and UAS.

123

http://dx.doi.org/10.1142/S0218843014400012
http://dx.doi.org/10.1109/TKDE.2011.192
http://dx.doi.org/10.1109/TKDE.2011.192
http://dx.doi.org/10.1109/CEC.2012.6256458
http://dx.doi.org/10.1109/CEC.2012.6256458

www.manaraa.com

1078 M. Solé, J. Carmona

Josep Carmona received the
MS and Ph.D. degrees in Com-
puter Science from the Technical
University of Catalonia, in 1999
and 2004, respectively. He is an
Associate Professor in the Soft-
ware Department of the same
university. His research interests
include formal methods, concur-
rent systems, and process and
data mining. He has co-authored
more than 50 research papers
in conferences and journals. In
2009, he received the best paper
award at the International Con-

ference on Application of Concurrency to System Design.

123

www.manaraa.com

Software & Systems Modeling is a copyright of Springer, 2018. All Rights Reserved.

	Encoding process discovery problems in SMT
	Abstract
	1 Introduction
	1.1 Organization of this paper

	2 Process discovery: applications and a motivating example
	3 Background
	3.1 Mathematical preliminaries
	3.2 Process discovery

	4 Generic algorithms for the discovery of additive and restrictive models based on SMT
	4.1 Discovery of additive models
	4.2 Discovery of restrictive models

	5 Discovering strategies for C-nets based on SMT
	5.1 Causal nets (C-nets)
	5.2 C-net discovery
	5.2.1 Protobinding sequences of a log
	5.2.2 Encoding the problem as linear constraints
	5.2.3 Solving linear constraints using SMT
	5.2.4 Adding a cost function

	5.3 The algorithm
	5.4 C-net replay and binding minimization
	5.5 A note on the selection of the SMT domain

	6 Discovering strategies for Petri nets based on SMT
	6.1 Petri nets, transition systems and the theory of regions
	6.2 Discovery of Petri nets

	7 Experiments
	8 Related work
	9 Conclusions, open problems and extensions
	Acknowledgements
	References

